Carbon Fiber Reinforced Polymer (CFRP) composites are often used as aircraft structural components, mostly due to their superior mechanical properties. In order to improve the efficiency of these structures, it is important to detect and characterize any defects occurring during the manufacturing process, removing the need to mitigate the risk of defects through increased thicknesses of structure. Such defects include porosity, which is well-known to reduce the mechanical performance of composite structures, particularly the inter-laminar shear strength. Previous work by the authors has considered the determination of porosity distributions in a fiber-metal laminate structure [1]. This paper investigates the use of wave-propagation modeling to invert the ultrasonic response and characterize the void distribution within the plies of a CFRP structure. Finite Element (FE) simulations are used to simulate the ultrasonic response of a porous composite laminate to a typical transducer signal. This simulated response is then applied as input data to an inversion method to calculate the distribution of porosity across the layers. The inversion method is a multi-dimensional optimization utilizing an analytical model based on a normal-incidence plane-wave recursive method and appropriate mixture rules to estimate the acoustical properties of the structure, including the effects of plies and porosity. The effect of porosity is defined through an effective wave-number obtained from a scattering model description. Although a single-scattering approach is applied in this initial study, the limitations of the method in terms of the considered porous layer, percentage porosity and void radius are discussed in relation to single- and multiple-scattering methods. A comparison between the properties of the modeled structure and the void distribution obtained from the inversion is discussed. This work supports the general study of the use of ultrasound methods with inversion to characterize material properties and any defects occurring in composites structures in three dimensions. This research is part of a Fellowship in Manufacturing funded by the UK Engineering and Physical Sciences Research Council (EPSRC) aimed at underpinning the design of more efficient composite structures and reducing the environmental impact of travel.

1.
I. A.
Veres
,
R. A.
Smith
, and
V. J.
Pinfield
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
(
6
),
1086
1094
(
2015
).
2.
D. E. W.
Stone
and
B.
Clarke
,
Non-Destructive Testing
8
(
3
),
137
145
(
1975
).
3.
E. A.
Birt
and
R. A.
Smith
,
Insight
46
(
11
),
681
686
(
2004
).
4.
R. A.
Smith
,
L. J.
Nelson
,
M. J.
Mienczakowski
, and
R. E.
Challis
,
Insight
51
(
2
),
82
87
(
2009
).
5.
E. A. S. A.
Standard
, “
Composite aircraft structure
,” in
AMC 20-29
(
2010
).
6.
A. S. T. M.
International
, “
Standard test method for constituent content of composite materials
,” in
ASTM D.
3171
(
2006
).
7.
A. M.
Amaro
,
P. N. B.
Reis
,
M. F. S. F.
de Moura
, and
J. B.
Santos
,
Insight
54
(
1
),
14
20
(
2012
).
8.
A.
Reh
,
B.
Plank
,
J.
Kastner
,
E.
Groller
, and
C.
Heinzl
, “
Porosity maps interactive exploration and visual analysis of porosity in carbon fiber reinforced polymers
,” in
Proceedings of Eurographics conference on visualization (EuroVis)
,
31
(
3
), pp
1185
1194
, (
2012
).
9.
K.-B.
Kim
,
D. K.
Hsu
, and
D. J.
Barnard
,
NDT&E International
56
,
10
16
(
2013
).
10.
D.
Grolemund
and
C. S.
Tsai
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
(
2
),
295
304
(
1998
).
11.
Y.
Feng
,
Z.
Feng
,
S.
Li
,
W.
Zhang
,
X.
Luan
,
Y.
Liu
,
L.
Cheng
, and
L.
Zhang
,
Composites: Part A
42
,
1645
1650
(
2011
).
12.
L.
Adler
,
J. H.
Rose
, and
C.
Mobley
,
J. Appl. Phys.
59
,
336
347
(
1986
).
13.
R. A.
Smith
,
R. E.
Challis
, and
M. J.
Mienczakwoski
, “
Ultrasonic composite evaluation
,”
Tech. Rep.
(Patent No WO/2010/041005,
2010
).
14.
R. A.
Smith
,
L. J.
Nelson
,
M. J.
Mienczakowski
, and
R. E.
Challis
,
Insight
51
(
2
),
82
87
(
2009
).
15.
X.
Tan
,
J.
Zhang
,
J.
Shan
,
S.
Yang
, and
J.
Ren
,
Composites: Part B
70
,
35
43
(
2015
).
16.
R. W.
Engelbart
,
C. M.
Vaccaro
,
S. E.
Black
, and
N.
Wood
, “
Porosity inspection system for composite structures with non-parallel surfaces
,”
Tech. Rep.
(Patent No 9038470,
2015
).
17.
N.
Dominguez
,
V.
Gibiat
, and
Y.
Esquerre
,
Wave motion
42
,
31
52
(
2005
).
18.
N.
Dominguez
, “
Modelisation de la propagation ultrasonore en milieu complexe - application au controle non destructif et a la caracterisation de la porosite dans les materiaux composites stratifies
,” Ph.D. thesis, PhD thesis,
Universite Paul Sabatier de Toulouse
2006
.
19.
R.
Fletcher
,
Practical methods of optimization
, edited by 2nd ed. (
John Wiley & Sons
,
New York
,
1987
).
20.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
,
Science
220
,
671
680
(
1983
).
21.
L.
Nolle
,
D. A.
Armstrong
,
A. A.
Hopgood
, and
J. A.
Ware
,
Int. Knowledge-Based Intelligent Eng. System
6
(
2
),
104
111
(
2002
).
22.
B.
Hosten
and
M.
Castaings
,
J. Acoust. Soc. Am.
94
(
3
),
1488
1495
(
1993
).
23.
S. I.
Rokhlin
and
L.
Wang
,
International Journal of Solids and Structures
39
,
5529
5545
(
2002
).
24.
V.
Pinfield
and
R.
Challis
,
Journal of Physics: Conference Series
269
,
1742
6588
(
2011
).
25.
V.
Pinfield
and
R. E.
Challis
,
J. Acoust. Soc. Am.
129
(
4
),
1851
1856
(
2011
).
26.
C. F.
Ying
and
R.
Truell
,
J. Appl. Phys.
27
,
1086
1097
(
1956
).
27.
P. C.
Waterman
and
R.
Truell
,
J. Math. Phys.
2
, p.
512
(
1961
).
28.
Z.
Hashin
,
J. Appl. Mech.
29
,
143
150
(
1962
).
29.
Z.
Hashin
,
J. Mech. Phys. Solids
13
,
119
134
(
1965
).
30.
Z.
Hashin
,
J. Appl. Mech.
46
,
546
550
(
1979
).
31.
R. A.
Smith
, “
Use of 3d ultrasound data sets to map the localised properties of fibre-reinforced composites
,” Ph.D. thesis, Ph.D. thesis,
University of Nottingham
2010
.
This content is only available via PDF.