Electromagnetic-acoustic transducers (EMATs) are attractive for non-destructive inspections because direct contact with the specimen under test is not required. This advantage comes at a high cost in sensitivity and therefore it is important to optimise every aspect of an EMAT. The signal strength produced by EMATs is in part determined by the coil impedance regardless of the transduction mechanism (e.g. Lorentz force, magnetostriction, etc.). There is very little literature on how to select the coil impedance that maximises the wave intensity; this paper addresses that gap. A transformer circuit is used to model the interaction between the EMAT coil and the eddy currents that are generated beneath the coil in the conducting specimen. Expressions for the coil impedances that satisfy the maximum efficiency and maximum power transfer conditions on transmission are presented. To support this analysis, a tunable coil that consists of stacked identical thin layers independently accessed is used so that the coil inductance can be modified while leaving the radiation pattern of the EMAT unaffected.

1.
R.
Thompson
,
Physical acoustics
19
,
157
200
(
1990
).
2.
M.
Hirao
and
H.
Ogi
,
EMATs for science and industry: noncontacting ultrasonic measurements
(
Springer Science & Business Media
,
2003
).
3.
K.
Ho
,
T.
Gan
,
D.
Billson
, and
D.
Hutchins
,
Review of scientific instruments
76
, p.
054902
(
2005
).
4.
E. R.
Dobbs
,
Physical acoustics
10
,
127
89
(
2012
).
5.
B.
Dutton
,
S.
Boonsang
, and
R.
Dewhurst
,
Sensors and Actuators A: Physical
125
,
249
259
(
2006
).
6.
X.
Jian
,
S.
Dixon
,
R.
Edwards
, and
J.
Morrison
,
Ultrasonics
44
,
e653
e656
(
2006
).
7.
J.
Morrison
,
S.
Dixon
,
M.
Potter
, and
X.
Jian
,
Ultrasonics
44
,
e1401
e1404
(
2006
).
8.
K.
Hao
,
S.
Huang
,
W.
Zhao
,
S.
Wang
, and
J.
Dong
,
NDT & E International
44
,
274
280
(
2011
).
9.
R.
Ribichini
,
F.
Cegla
,
P.
Nagy
, and
P.
Cawley
,
NDT & E International
45
,
32
38
(
2012
).
10.
A.
Kurs
,
A.
Karalis
,
R.
Moffatt
,
J. D.
Joannopoulos
,
P.
Fisher
, and
M.
Soljačicć
,
science
317
,
83
86
(
2007
).
11.
S.
Cheon
,
Y.-H.
Kim
,
S.-Y.
Kang
,
M. L.
Lee
,
J.-M.
Lee
, and
T.
Zyung
,
Industrial Electronics
,
IEEE Transactions on
58
,
2906
2914
(
2011
).
12.
B. L.
Cannon
,
J. F.
Hoburg
,
D. D.
Stancil
, and
S. C.
Goldstein
,
Power Electronics
,
IEEE Transactions on
24
,
1819
1825
(
2009
).
13.
R.
Want
,
Pervasive Computing
,
IEEE
5
,
25
33
(
2006
).
14.
U.-M.
Jow
and
M.
Ghovanloo
,
Biomedical Circuits and Systems
,
IEEE Transactions on
1
,
193
202
(
2007
).
15.
D.
Placko
and
I.
Dufour
, “
Eddy current sensors for nondestructive inspection of graphite composite materials
,” in
Industry Applications Society Annual Meeting, 1992., Conference Record of the 1992 IEEE
(
IEEE
,
1992
), pp.
1676
1682
.
16.
Y.
Le Bihan
,
NDT & E International
36
,
297
302
(
2003
).
17.
L. Hitachi Metals
America
, “
enquote “bibinfo title Permanent magnets
”, (
2015
).
18.
P.
Wilcox
,
M.
Lowe
, and
P.
Cawley
,
Ultrasonics, Ferroelectrics, and Frequency Control
,
IEEE Transactions on
52
,
653
665
(
2005
).
19.
M.
Vroubel
,
Y.
Zhuang
,
B.
Rejaei
, and
J. N.
Burghartz
,
Electron Device Letters
,
IEEE
25
,
787
789
(
2004
).
20.
N.
Ning
,
X.
Li
,
J.
Fan
,
W.
Ng
,
Y.
Xu
,
X.
Qian
, and
H.
Seet
,
Magnetics
,
IEEE Transactions on
42
,
1585
1590
(
2006
).
This content is only available via PDF.