A sound signal is transmitted to the cochlea through vibration of the middle ear that induces a pressure difference across the cochlea’s elastic basilar membrane. In an alternative pathway for transmission, the basilar membrane can also be deflected by vibration of the cochlear bone, without participation of the middle ear. This second pathway, termed bone conduction, is increasingly used in commercial applications, namely in bone-conduction headphones that deliver sound through vibration of the skull. The mechanism of this transmission, however, remains unclear. Here, we study a cochlear model in which the cochlear bone is deformable. We show that deformation of the cochlear bone, such as resulting from bone stimulation, elicits a wave on the basilar membrane and can hence explain bone conduction. Interestingly, stimulation of the basilar membrane can in turn elicit a wave of deformation of the cochlear bone. We show that this has implications for the propagation of otoacoustic emissions: these can emerge from the cochlea through waves of bone deformation.

1.
von Békésy
G
(
1932
)
Zur Theorie des Hörens bei der Schallaufnahme durch Knochenleitung
.
Ann Phys
13
:
111
125
2.
Borrmann
A
,
Arnold
W
(
2007
)
Non-syndromal round window atresia: an autosomal dominant genetic disorder with variable penetrance?
Eur Arch Otorhinolaryngol
264
:
1103
1108
3.
Dong
W
,
Olson
ES
(
2008
)
Supporting evidence for reverse cochlear traveling waves
.
J Acoust Soc Am
123
:
222
240
4.
He
W
,
Fridberger
A
,
Porsov
E
,
Grosh
K
,
Ren
T
(
2008
)
Reverse wave propagation in the cochlea
.
Proc Natl Acad Sci USA
105
:
2729
2733
5.
Hea
T
,
Nuttall
A
,
Ren
T
(
2007
)
Two-tone distortion at different longitudinal locations on the basilar membrane
.
Hear Res
228
:
112
122
6.
Herzog
H
,
Krainz
W
(
1926
)
Das Knochenleitungsproblem. Theoretische Erwägungen und Experimentelle Ergebnisse
.
Z Hals, Nasen u Ohrenheilkunde
15
:
300
313
7.
Kalluri
R
,
Shera
CA
(
2001
)
Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation
.
J Acoust Soc Am
109
:
622
637
8.
Knight
RD
,
Kemp
DT
(
2000
)
Indications of different distortion product otoacoustic emission mechanisms from a detailed f1, f2 area study
.
J Acoust Soc Am
107
:
457
473
9.
Knight
RD
,
Kemp
DT
(
2001
)
Wave and place fixed DPOAE maps of the human ear
.
J Acoust Soc Am
109
:
1513
1525
10.
Meenderink
SWF
,
van der Heijden
M
(
2010
)
Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves
.
J Neurophysiol
103
:
1448
1455
11.
Perez
R
,
Adelman
C
,
Chordekar
S
,
Ishai
R
,
Sohmer
H
(
2015
)
Air, bone and soft tissue excitation of the cochlea in the presence of severe impediments to ossicle and window mobility
.
Eur Arch Otorhinolaryngol
272
:
853
860
12.
Reichenbach
T
,
Stefanovic
A
,
Nin
F
,
Huspeth
AJ
(
2012
)
Waves on Reissner’s membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea
.
Cell Rep
1
:
374
384
13.
Ren
T
(
2004
)
Reverse propagation of sound in the gerbil cochlea
.
Nat Neurosci
7
:
333
334
14.
Shera
CA
,
Guinan
JJ
(
1999
)
Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs
.
J Acoust Soc Am
105
:
782
798
15.
Steele
CR
,
Taber
LA
(
1979
)
Comparison of WKB and finite difference calculations for a two-dimensional cochlear model
.
J Acoust Soc Am
65
:
1001
1006
16.
Tchumatchenko
T
,
Reichenbach
T
(
2014
)
A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission
.
Nature Commun
5
:
4160
17.
Timoshenko
S
,
Gere
J
(
1985
) Theory of Elastic Stability.
Mineola
:
Dover
18.
Zweig
G
(
1976
)
Basilar membrane motion
.
Cold Spring Harb Symp Quant Biol
40
:
619
633
19.
Zweig
G
,
Shera
CA
(
1995
)
The origin of periodicity in the spectrum of evoked otoacoustic emissions
.
J Acoust Soc Am
98
:
2018
2047
This content is only available via PDF.