The synthesis routes for polycrystalline bulk Sr2FeMoO6 (SFMO), offer various possibilities, but in all the cases it is difficult to obtain a single phase of this compound. A new challenge in the field is to achieve mono-crystals using different growing routes and the Bridgman method represents one of them. In order to establish the optimal conditions of mono-crystals growing process, a complex thermal investigation of bulk double perovskite has been performed. Differential thermal analysis investigation in argon inert atmosphere, starting from room temperature up to 1650°C provided information about melting and re-crystallization temperature range. Both, the activation energy of Sr2FeMoO6 re-crystallization process and the re-crystallization mechanism were comparatively analyzed by two free-model estimations (Friedman and Ozawa-Flynn-Wall analysis). The resulted data are very important in order to set up the heating program of Bridgman furnace.

1.
K.-I.
Kobayashi
,
T.
Kimura
,
H.
Sawada
,
K.
Terakura
and
Y.
Tokura
,
Nature
395
,
677
680
(
1998
).
2.
W. H.
Song
,
J. M.
Dai
,
S. L.
Ye
,
K. Y.
Wang
,
J. J.
Du
and
Y. P.
Sun
,
J. Appl. Phys.
89
,
7678
(
2001
).
3.
C.
Valsangiacom
,
C.
Plapcianu
,
L.
Stoica
,
G.
Aldica
,
V.
Kuncser
,
J. Optoelectron. Adv. M.
10
,
845
848
(
2008
).
4.
Y.
Tomioka
,
T.
Okuda
,
Y.
Okimoto
,
R.
Kumai
,
K.-I.
Kobayashi
, and
Y.
Tokura
,
Phys. Rev. B
61
,
422
(
2000
).
5.
J.
Navarro
,
J.
Nogués
,
J. S.
Muñoz
, and
J.
Fontcuberta
,
Phys. Rev. B
67
,
174416
(
2003
).
6.
A. B.
Mũnoz-García
,
M.
Pavone
and
E. A.
Carter
,
Chem. Matter.
23
,
4525
4536
(
2011
).
7.
Y.
Tomioka
,
T.
Okuda
,
Y.
Okimoto
,
R.
Kumai
, and
K.-I.
Kobayashi
,
Phys. Rev. B
61
,
422
(
2000
).
8.
I.
Nicoară
,
D.
Nicoară
,
Cristale artificiale obţinute prin metoda Bridgman şi EFG
, (
Ed. UVT
,
Timisoara
,
2008
).
9.
J.
Fainberg
,
D.
Vizman
,
J.
Friedrich
and
G.
Mueller
,
J. Cryst. Growth
303
,
124
134
(
2007
).
10.
R.
Kircheisen
and
J.
Topfer
,
J. Solid State Chem.
185
,
76
81
(
2012
).
11.
H. L.
Friedman
,
Polymer Letters
7
,
41
46
(
1969
)
12.
H.
Nayak
,
D.
Bhatta
,
Thermochim. Acta
373
,
37
43
(
2001
)
13.
J. H.
Flynn
,
J. Thermal. Anal.
34
,
367
381
(
1988
)
14.
T.
Ozawa
,
Thermochim. Acta
100
,
109
.
15.
K.-K.
Yang
,
X.-L.
Wang
,
Yu-Zhong
,
B.
Wu
,
Y.-D.
Jin
,
B.
Yang
,
Eur. Polym. J.
39
,
1567
1574
(
2003
).
16.
A.
Khawam
,
D.R.
Flanagan
,
J. Phys. Chem. B
110
,
17315
17328
(
2006
).
17.
J.
Yang
,
B. J.
McCoy
,
G.J.
Madras
,
Phys. Chem. B
109
,
18550
(
2005
).
18.
J.
Liu
,
J.J.
Wang
,
H.H.
Li
,
D.Y.
Shen
,
J.M.
Zhang
,
Y.
Ozaki
,
S.K.
Yan
,
J. Phys. Chem. B
110
,
738
(
2006
).
This content is only available via PDF.