Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.

1.
J.
Mohan
,
V.
Krishnaveni
and
Y.
Guo
,
Biomed. Signal Proces.
9
,
56
69
(
2014
).
2.
S. T.
Baker
,
M.
Yücel
,
A.
Fornito
,
N. B.
Allen
and
D. I.
Lubman
,
Neurosci. Biobeh. Rev.
37
,
1713
1723
(
2013
).
3.
Otsu
N
,
IEEE Trans. Syst. Man. Cybern.
9
,
62
66
(
1979
).
4.
J.
Sauvola
and
M.
Pietikainen
,
Pattern Recogn.
33
,
225
236
(
2000
).
5.
W.
Niblack
,
An Introduction to Digital Image Processing
(
Prentice Hall
,
New Jersey
,
1986
), pp.
29
37
.
6.
J.
Bernsen
, “
Dynamic thresholding of gray level images
”, in:
Proceedings of the 8th International Conference on Pattern Recognition-1986
, pp.
1251
1255
.
7.
X.
Lladó
,
A.
Oliver
,
M.
Cabezas
,
J.
Freixenet
,
J. C.
Vilanova
,
A.
Quiles
,
L.
Valls
,
L.
Ramió-Torrentŕ
, and
Ŕ.
Rovira
,
Inform. Sciences
186
,
164
185
(
2012
).
8.
P.
Anbeek
,
K. L.
Vincken
,
F.
Groenendaal
,
A.
Koeman
,
M.J.
van Osch
and
J.
van der Grond
,
Pediatr. Res.
63
,
158
163
(
2008
).
9.
R. R.
Laddha
and
A. S.
Ladhak
,
IJAIEM
3
,
383
387
(
2014
).
10.
P. S.
Kumar
and
P. G.
Kumar
,
AJAM
11
,
329
336
(
2014
).
11.
N. S.
Zulpe
,
S. S.
Chowhan
and
V. P.
Pawar
,
Int. J. Comput. Appl.
35
,
13
16
(
2011
).
12.
M. M.
Ahmed
and
D. B.
Mohammad
,
IJIP
2
,
27
34
(
2008
).
13.
W. B.
Dou
,
S.
Ruan
,
Y. P.
Chen
,
D.
Bloyet
, and
J. M.
Constans
,
Image Vision Comput.
25
,
164
171
(
2007
).
14.
J.
Liu
,
J. K.
Udupa
,
D.
Odhner
,
D.
Hackney
, and
G.
Moonis
,
Comput. Med. Imag. Grap.
29
,
21
34
(
2005
).
15.
S. N.
Sulaiman
,
N. Awang
Non
,
I. S.
Isa
and
N.
Hamzah
,
Adv. Electr. Comp. Eng.
1
,
236
241
(
2013
).
16.
D.
Chi
and
W.
Cheng
,
J. Comput. Inform. Syst.
6
,
1983
1993
(
2010
).
17.
J. L.
Whitwell
,
S. A.
Przybelski
,
S. D.
Weigand
and
R. J.
Ivnik
,
Brain
132
,
2932
2946
(
2009
).
18.
X.
Lladó
,
A.
Oliver
,
M.
Cabezas
,
J.
Freixenet
and
J.C.
Vilanova
,
Inform. Sciences
186
,
164
185
(
2012
).
19.
G.
Gun
,
G.
Ma
and
J.
Wu
,
Data Clustering: Theory, algorithms, and Application
(
SIAM
,
Alexandria
,
2007
) pp.
58
69
.
20.
D. R.
Wilson
and
T.R.
Martinez
,
J. Artif. Intell. Res.
6
,
1
34
(
1997
).
This content is only available via PDF.