Wave propagation can be an accurate method for determining material properties. High frequency whistler mode waves (0.7 < ω/|Ωce| < 1) in an overdense plasma (ωpe > |Ωce|) are damped primarily by Doppler-shifted electron cyclotron resonance. A kinetic description of whistler mode propagation parallel to the background magnetic field shows that damping is proportional to the parallel electron distribution function. This property enables an experimental determination of the parallel electron distribution function using a measurement of whistler mode wave absorption. The whistler mode wave absorption diagnostic uses this technique on UCLA’s Large Plasma Device (LaPD) to measure the distribution of high energy electrons (5 − 10vte) with 0.1% precision. The accuracy is limited by systematic effects that need to be considered carefully. Ongoing research uses this diagnostic to investigate the effect of inertial Alfvén waves on the electron distribution function. Results presented here verify experimentally the linear effects of inertial Alfvén waves on the reduced electron distribution function, a necessary step before nonlinear physics can be tested. Ongoing experiments with the whistler mode wave absorption diagnostic are making progress toward the first direct detection of electrons nonlinearly accelerated by inertial Alfvén waves, a process believed to play an important role in auroral generation.

1.
A.
Hasegawa
.
Particle acceleration by MHD surface wave and formation of aurora
.
J. Geophys. Res.
,
81
:
5083
5090
, October
1976
.
2.
C. C.
Chaston
,
C. W.
Carlson
,
J. P.
McFadden
,
R. E.
Ergun
, and
R. J.
Strangeway
.
How important are dispersive Alfvén waves for auroral particle acceleration?
Geophys. Res. Lett.
,
34
:
7101
, April
2007
.
3.
C. A.
Kletzing
and
S.
Hu
.
Alfvén wave generated electron time dispersion
.
Geophys. Res. Lett.
,
28
:
693
696
,
2001
.
4.
F.
Skiff
,
D. A.
Boyd
, and
J. A.
Colborn
.
Measurements of electron dynamics during lower hybrid current drive
.
Plasma Phys. Control. Fusion
,
36
:
1371
1379
, August
1994
.
5.
D. J.
Thuecks
,
F.
Skiff
, and
C. A.
Kletzing
.
Measurements of parallel electron velocity distributions using whistler wave absorption
.
Rev. Sci. Instrum.
,
83
(
8
):
083503
, August
2012
.
6.
C. A.
Kletzing
.
Electron acceleration by kinetic Alfvén waves
.
J. Geophys. Res.
,
99
:
11095
11104
, June
1994
.
7.
K.
Stasiewicz
,
P.
Bellan
,
C.
Chaston
,
C.
Kletzing
,
R.
Lysak
,
J.
Maggs
,
O.
Pokhotelov
,
C.
Seyler
,
P.
Shukla
,
L.
Stenflo
,
A.
Streltsov
, and
J.-E.
Wahlund
.
Small Scale Alfvénic Structure in the Aurora
.
Space Sci. Rev.
,
92
:
423
533
, May
2000
.
8.
C. A.
Kletzing
,
D. J.
Thuecks
,
F.
Skiff
,
S. R.
Bounds
, and
S.
Vincena
.
Measurements of Inertial Limit Alfvén Wave Dispersion for Finite Perpendicular Wave Number
.
Phys. Rev. Lett.
,
104
(
9
):
095001
, March
2010
.
9.
D. J.
Drake
,
C. A.
Kletzing
,
F.
Skiff
,
G. G.
Howes
, and
S.
Vincena
.
Design and use of an Elsässer probe for analysis of Alfvén wave fields according to wave direction
.
Rev. Sci. Instrum
,
82
(
10
):
103505
, October
2011
.
10.
F.
Skiff
,
D. A.
Boyd
, and
J. A.
Colborn
.
Measurements of electron parallel-momentum distributions using cyclotron wave transmission
.
Phys. Fluids B
,
5
:
2445
2450
, July
1993
.
11.
T. H.
Stix
.
Waves in plasmas.
1992
.
This content is only available via PDF.