The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

1.
R.
Hemsworth
, et al,
Nucl. Fusion
49
,
045006
(
2009
).
2.
A.
Stäbler
, et al,
Fusion Eng. Des.
84
,
265
(
2009
).
3.
ITER neutral beam heating and current drive system
”,
Design Description Document N53 DDD appendix 2
(
2001
).
4.
E.
Speth
, et al,
Nucl. Fusion
46
(
6
),
S220
(
2006
).
5.
P.
Franzen
, et al,
Nucl. Fusion
47
,
S264
(
2007
).
6.
W.
Kraus
, et al,
Rev. Sci. Instrum.
79
(
2
),
02C108
(
2008
).
7.
P.
Sonato
,
V.
Antoni
,
M.
Bigi
,
G.
Chitarin
 et al,
AIP Conf. Proc.
1515
,
549
(
2013
).
8.
A.
Masiello
 et al 
Fusion Eng. Des.
86
,
860
(
2011
).
9.
D.
Marcuzzi
,
P.
Agostinetti
,
M.
Dalla Palma
,
F.
Degli Agostini
 et al,
Fusion Eng. Des.
,
85
,
1792
(
2010
).
10.
L.R.
Grisham
,
P.
Agostinetti
,
G.
Barrera
,
P.
Blatchford
 et al,
Fusion Eng. Des.
,
87
,
1805
(
2012
).
11.
B.
Zaniol
,
R.
Pasqualotto
, and
M.
Barbisan
,
Rev. Sci. Instrum.
83
,
043117
(
2012
).
12.
M.
Barbisan
,
B.
Zaniol
and
R.
Pasqualotto
,
Rev. Sci. Instrum.
85
,
11E430
(
2014
).
13.
Franzen
P.
 et al, “
Status of the ELISE Test Facility
”,
these proceedings
.
14.
B.
Ruf
, University Augsburg, PhD thesis, “
Reconstruction of Negative Hydrogen Ion Beam Properties from Beamline Diagnostics
”,
to be published
(
2014
).
15.
A.
Lorenz
,
U.
Fantz
,
P.
Franzen
,
IPP Report 4/285
,
Max-Planck-Institut für Plasmaphysik
(
2005
).
16.
C
Wimmer
,
U.
Fantz
and
the NNBI-team
, “
Dependence of the Source Performance on Plasma Parameters at the BATMAN Test Facility
”,
these proceedings
.
17.
F. P.
Penningsfeld
,
Technical Report IPP 4-229
(
1986
).
18.
P.
Franzen
,
U.
Fantz
,
T. N.
Team
,
AIP Conf. Proc.
1390
(
1
),
310
(
2011
).
19.
G.
Serianni
, et al,
Rev. Sci. Instrum.
85
,
02A736
(
2014
).
20.
G.
Serianni
, et al, “
Negative Ion Beam Characterisation in BATMAN by mini-STRIKE: Improved Design and New Measurements
”,
these proceedings
.
21.
V. N.
Gorshko
, et al,
Plasma Phys. Reports
33
,
1032
(
2007
).
This content is only available via PDF.