Conventional relativistic mean-field theory is extended with the introduction of higher-order derivative couplings of nucleons with the meson fields. The Euler-Lagrange equations follow from the principle of stationary action. From invariance principles of the Lagrangian density the most general expressions for the conserved current and energy-momentum tensor are derived. The nucleon self-energies show the explicit dependence on the meson fields. They contain additional regulator functions which describe the energy dependence. The density dependence of meson-nucleon couplings causes the apperance of additional rearrangement contributions in the self-energies. The equation of state of infinite nuclear matter is obtained and the thermodynamical consistency of the model is demonstrated. This model is applied to the description of spherical, non-rotating stars in β-equilibrium. Stellar structure is calculated by solving the Tolman-Oppenheimer-Volkov (TOV) equations. The results for neutron stars are shown in terms of mass-radius relations.

This content is only available via PDF.