Jleli and Samet[1] introduced a new concept, named a ℱ-metric space, as a generalization of the notion of metric space. We define new generalization of modular metric space as modular ℱ-metric space. We compare the topology produced by modular metric and by modular ℱ-metric, then cover some useful properties of this topology for fixed point theorems for future studies. In the end, we prove Banach contraction principle for modular ℱ-metric space.

1.
M.
Jleli
and
B.
Samet
,
On a new generalization of metric spaces
,
J. Fixed Point Theory Appl
.
20
:
128
(
2018
)
2.
D.
Turkoglu
and
N.
Manav
,
Fixed point theorems in new type of modular metric spaces
,
Fixed Point Theory and Applications
, (
2018
).
3.
S.
Som
,
A.
Bera
,
L. K.
Dey
,
Some remarks on the metrizability of F-metric spaces
, arXiv:1808.02736v1 [math.FA]-8 August
2018
This content is only available via PDF.