Jleli and Samet[1] introduced a new concept, named a ℱ-metric space, as a generalization of the notion of metric space. We define new generalization of modular metric space as modular ℱ-metric space. We compare the topology produced by modular metric and by modular ℱ-metric, then cover some useful properties of this topology for fixed point theorems for future studies. In the end, we prove Banach contraction principle for modular ℱ-metric space.
REFERENCES
1.
M.
Jleli
and B.
Samet
, On a new generalization of metric spaces
, J. Fixed Point Theory Appl
. 20
:128
(2018
)2.
D.
Turkoglu
and N.
Manav
, Fixed point theorems in new type of modular metric spaces
, Fixed Point Theory and Applications
, (2018
).3.
S.
Som
, A.
Bera
, L. K.
Dey
, Some remarks on the metrizability of F-metric spaces
, arXiv:1808.02736v1 [math.FA]-8 August 2018
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)