Human movement organs are exposed to numerous loads that may lead to discomforts, injuries, as a result, the necessity of replacing the traumatized or used joints with artificial implants improving health and comfort of life. Application of anodic oxidation as a method of surface modification of new titanium alloys based on biocompatible alloy components allows to obtain oxide nanotubes that will improve the osseointegration process at the border of the live tissue - implant. In this paper, the production technology of oxide nanotubes of the first generation on the Ti13Nb13Zr biomedical alloy using anodic oxidation in hydrofluoric acid electrolyte at 20 V for 120 min, is developed. Under proposed conditions single-walled oxide nanotubes were produced with an average outer diameter of 87 nm, inner diameter of 71 nm and about 1 µm length. The physical and chemical properties of the anodized surface of the Ti13Nb13Zr alloy were characterized using grazing incidence X-ray diffraction, scanning electron microscopy with field emission and atomic force microscopy. The obtained results give a new insight into improvement of the ability of the Ti13Nb13Zr implant alloy for better osseointegration.

1.
1.
N. K.
Awad
,
S. L
Edwards
,
Y. S.
Morsi
,
Mater. Sci. Eng. C.
76
,
1401
1412
(
2017
).
2.
M. T.
Mohammed
,
Z. A.
Khan
,
A. N.
Siddiquee
, The Imperative Materials for Biomedical Applications Titanium and its Alloys, (
2012
).
3.
K.
Lee
,
A.
Mazare
,
P.
Schmuki
,
Chem. Rev.
114
(
19
),
9385
9454
(
2014
).
4.
P.
Sensharma
,
G.
Madhumathi
,
R. D.
Jayant
,
A. K.
Jaiswal
,
Mater. Sci. Eng. C
77
,
1302
1315
(
2017
).
5.
T.
Albrektsson
,
P.
Brånemark
,
H.
Hansson
,
J.
Lindström
,
Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting
,
Direct Bone-to-Implant Anchorage in Man.
6470
(
2009
).
6.
M.
Kulkarni
,
A.
Mazare
,
E.
Gongadze
,
Nanotechnology.
26
,
62002
(
1
18
) (
2015
).
7.
A.
Stróż
,
G.
Dercz
,
B.
Chmiela
,
D.
Stróż
,
B.
Łosiewicz
,
Acta Phys. Pol. A.
130
(
4
),
1079
1080
(
2016
).
8.
A.
Stróż
,
B.
Łosiewicz
,
M.
Zubko
,
B.
Chmiela
,
K.
Balin
,
G.
Dercz
,
M.
Gawlikowski
,
T.
Goryczka
,
Mater. Charact.
132
,
363
372
(
2017
).
9.
A.
Smołka
,
G.
Dercz
,
K.
Rodak
,
B.
Łosiewicz
,
Arch. Metall. Mater.
60
(
4
),
8
13
(
2015
).
10.
M.
Kulkarni
,
A.
Mazare
,
E.
Gongadze
,
Š.
Perutkova
,
V.
Kralj-igli
,
Nanotechnology
26
(
2015
)
062002
(
18
pp)
11.
G.
Dercz
,
I.
Matuła
,
M.
Zubko
,
J.
Dercz
,
Powder Diffr.
32
(
S1
),
S186
S192
(
2017
).
12.
C. A.
Grimes
,
G. K.
Mor
,
TiO2 Nanotube Arrays
.
Springer
(
2009
)
13.
L.
Aïnouche
,
L.
Hamadou
,
A.
Kadri
,
N.
Benbrahim
,
D.
Bradai
,
Electrochim. Acta
133
,
597
6
14.
V.
Zwilling
,
M.
Aucouturier
,
E.
Darque-Ceretti
,
Surf. Interface Anal.
27
,
629
637
(
1999
).
15.
G. K.
Mor
,
M. A.
Carvalho
,
O. K.
Varghese
,
M. V.
Pishko
,
C. A.
Grimes
,
J Mater Res.
19
,
628
634
(
2004
).
16.
N.
Wang
,
H.
Li
,
W.
,
Biomaterials
32
(
29
),
6900
6911
(
2011
)
17.
C. D. Seunghan
Oh
,
J Biomed Mater Res.
33
,
97
103
(
2015
).
This content is only available via PDF.