Optical losses in central receiver systems may be enhanced by the atmospheric attenuation taking place along the optical path between the heliostat mirrors and the receiver. Ray-tracing and performance codes usually estimate the atmospheric attenuation by a third order polynomial whose coefficients can be input by the user in the model. A sensitivity study on the time-resolution for modelling the atmospheric attenuation is presented in this work by modelling two reference solar tower plants (Ivanpah 1 and Crescent Dunes) with the System Advisor Model (SAM). The input for the atmospheric attenuation has been computed from daily, monthly means and annual mean aerosol optical depth for the Tamanrasset site. The impact of considering one unique polynomial for the whole year to one polynomial every day is higher in the case of Crescent Dunes due to its larger solar field, and relative averages differences in the daily output power may be from around 2% to 4.5% due to the daily peaks of AOD that result in eventual high attenuating conditions for the solar field.

1.
N.
Hanrieder
,
S.
Wilbert
,
R.
Pitz-Paal
,
C.
Emde
,
J.
Gasteiger
,
B.
Mayer
,
J.
Polo
,
Atmospheric extinction in solar tower plants: absorption and broadband correction for MOR measurements
,
Atmos. Meas. Tech.
8
(
2015
)
3467
3480
. doi:.
2.
J.
Polo
,
J.
Ballestrín
,
E.
Carra
,
Sensitivity study for modelling atmospheric attenuation of solar radiation with radiative transfer models and the impact in solar tower plant production
,
Solar Energy.
134
(
2016
)
219
227
. doi:.
3.
J.
Ballestrín
,
A.
Marzo
,
Solar radiation attenuation in solar tower plants
,
Solar Energy.
86
(
2012
)
388
392
. doi:.
4.
N.
Hanrieder
,
S.
Wilbert
,
D.
Mancera-Guevara
,
R.
Buck
,
S.
Giuliano
,
R.
Pitz-Paal
,
Atmospheric extinction in solar tower plants –A review
,
Solar Energy.
(
2017
). doi:.
5.
M.J.
Wagner
,
Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants
, (
2008
)
259
.
6.
H.C.
Hottel
,
A simple model for estimating the transmittance of direct solar radiation through clear atmospheres
,
Solar Enerey.
18
(
1976
)
129
134
. doi:.
7.
P.L.
Leary
,
J.D.
Hankins
, User’s Guide for MIRVAL –A Computer Coe for Modeling the Optical Behavior of Reflecting Solar Concentrators, Sandia Report, SAND77-8280,
Alburquerque, USA.
(
1979
).
8.
C.N.
Vittitoe
,
F.
Biggs
,
Terrestrial propagation loss
,
Presented at the American Section of the International Solar Energy Society
,
Denver, CO
. (
1978
).
9.
B.L.
Kistler
,
A user’s manual for DELSOL3: A computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants, Other Information: Portions of This Document Are Illegible in Microfiche Products. Original Copy Available until Stock Is Exhausted
.
Includes 5 Sheets of 48x Reduction Microfiche.
(
1986
) Medium: X; Size: Pages:
231
. doi:SAND86-8018.
10.
C.L.
Pitman
,
L.L.
Vant-Hull
,
Performance of optimized solar central receiver systems as a function of receiver thermal loss per unit area
,
Solar Energy.
37
(
1986
)
457
468
. doi:.
11.
M.
Sengupta
,
M.
Wagner
,
Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems
, in:
SolarPACES 2011 Conf
.,
Granada, Spain
,
2011
. http://www.nrel.gov/docs/fy11osti/52487.pdf.
12.
N.
Hanrieder
,
M.
Sengupta
,
Y.
Xie
,
S.
Wilbert
,
R.
Pitz-Paal
,
Modeling beam attenuation in solar tower plants using common DNI measurements
,
Solar Energy.
129
(
2016
)
244
255
. doi:.
13.
C.
Emde
,
R.
Buras-Schnell
,
A.
Kylling
,
B.
Mayer
,
J.
Gasteiger
,
U.
Hamann
,
J.
Kylling
,
B.
Richter
,
C.
Pause
,
T.
Dowling
,
L.
Bugliaro
,
The libRadtran software package for radiative transfer calculations (version 2.0.1
),
Geoscientific Model Development.
9
(
2016
)
1647
1672
. doi:.
14.
C.
Emde
,
R.
Buras-Schnell
,
A.
Kylling
,
B.
Mayer
,
J.
Gasteiger
,
U.
Hamann
,
J.
Kylling
,
B.
Richter
,
C.
Pause
,
T.
Dowling
,
L.
Bugliaro
,
The libRadtran software package for radiative transfer calculations (version 2.0.1
),
Geoscientific Model Development.
9
(
2016
)
1647
1672
. doi:.
15.
A.
Dobos
,
T.
Neises
,
M.
Wagner
,
Advances in CSP Simulation Technology in the System Advisor Model
,
Energy Procedia.
49
(
2014
)
2482
2489
. doi:.
16.
T.
Neises
,
M.J.
Wagner
,
Simulation of Direct Steam Power Tower Concentrated Solar Plant
, in:
ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
,
2012
: p.
499
. doi:.
17.
J.
Remund
,
S.C.
Müller
,
Solar Radiation and Uncertainty Information of Meteonorm
7
, in:
Pvsec 2011
,
2011
: pp.
2
4
. doi:.
18.
A.
Inness
,
F.
Baier
,
A.
Benedetti
,
I.
Bouarar
,
S.
Chabrillat
,
H.
Clark
,
C.
Clerbaux
,
P.
Coheur
,
R.J.
Engelen
,
Q.
Errera
,
J.
Flemming
,
M.
George
,
C.
Granier
,
J.
Hadji-Lazaro
,
V.
Huijnen
,
D.
Hurtmans
,
L.
Jones
,
J.W.
Kaiser
,
J.
Kapsomenakis
,
K.
Lefever
,
J.
Leitão
,
M.
Razinger
,
A.
Richter
,
M.G.
Schultz
,
A.J.
Simmons
,
M.
Suttie
,
O.
Stein
,
J.N.
Thépaut
,
V.
Thouret
,
M.
Vrekoussis
,
C.
Zerefos
,
The MACC reanalysis: An 8 yr data set of atmospheric composition
,
Atmospheric Chemistry and Physics.
13
(
2013
)
4073
4109
. doi:.
This content is only available via PDF.