Short-lived radon isotopes, such as 219Rn or 220Rn, are a serious source of background for the measurement of the neu-trino mass with the KATRIN experiment. Most of the radon emanates from the main vacuum pumps of the KATRIN Main Spec-trometer, which consist of 2000 m of Non-Evaporable Getter (NEG) strips. This paper describes a method to suppress the radon rate with liquid-nitrogen-cooled baffles in front of the NEG-pumps in the ultra-high vacuum chamber and compares simulations with measured data. The effectiveness of the method depends both on the half-life of the radon isotopes, and on the temperature of the cryogenic baffles, which affects their sojourn time on the cold surface. The measurements with the Main Spectrometer showed that the radon suppression with cold baffles works sufficiently well, so that the remaining background is no longer dominated by radon decays.

1.
KATRIN Collaboration
,
KATRIN Design Report 2004
,
FZKA report 7090
, http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf
2.
S.
Mertens
 et al,
Astroparticle Phys.
41
, (
2013
)
52
62
3.
V.M.
Lobashev
,
P.E.
Spivak
,
Nucl. Instrum. Methods A
240
, (
1985
)
305
310
4.
A.
Picard
 et al,
Nucl. Instrum. Methods
63
(
3
), (
1992
)
345
358
5.
N.
Wandkowsky
 et al,
J. Phys. G: Nucl. Part. Phys.
40
, (
2013
)
085102
6.
F.
Harms
,
Characterization and Minimization of Background Processes in the KATRIN Main Spectrometer
, PhD-thesis,
KIT
(
2015
)
7.
M.
Arenz
 et al,
JINST 11
(
2016
),
P04011
8.
X.
Luo
,
L.
Bornschein
,
Chr.
Day
, and
J.
Wolf
,
Vacuum
81
, (
2007
)
777
781
9.
F.
Fränkle
 et al,
Astroparticle Phys.
35
, (
2011
)
128
134
10.
S.
Görhardt
,
Background Reduction Methods and Vacuum Technology at the KATRIN Spectrometers
, PhD-thesis,
KIT
(
2014
)
11.
K.
Jousten
(editor),
Handbook of Vacuum Technology
,
Wiley-VCH
(
2008
), ISBN: 978-3-527-40723-1
12.
R.
Eichler
and
M.
Schädel
,
J. Phys. Chem. B
106
, (
2002
)
5413
5420
13.
A.
Junod
 et al,
J. Phys.: Condens. Matter
1
, (
1989
)
8021
8034
14.
B.
Eichler
,
H. P.
Zimmermann
, and
H. W.
Gäggeler
,
J. Phys. Chem. A
, Vol.
104
, No.
14
, (
2000
)
3126
3131
15.
R.
Kersevan
and
J.-L.
Pons
,
J. Vac. Sci. Technol. A
27
, (
2009
)
1017
16.
MOLFLOW+, molecular flow TPMC simulation code
,
CERN
(
2016
), http://molflow.web.cern.ch
17.
M.
Ady
and
R.
Kersevan
,
Molflow+ User Guide
,
CERN
(
2014
)
18.
G.
Drexlin
 et al,
Vacuum
138
, (
2017
)
165
172
This content is only available via PDF.