The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO – syngas – which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

1.
A.
Steinfeld
, “
Solar thermochemical production of hydrogen––a review
,”
Sol. Energy
78
,
603
615
(
2005
).
2.
G. P.
Smestad
and
A.
Steinfeld
, “
A. Review: Photochemical and Thermochemical Production of Solar Fuels from H2O and CO2 Using Metal Oxide Catalysts
,”
Ind. Eng. Chem. Res.
51
,
11828
11840
(
2012
).
3.
C.
Perkins
and
A. W.
Weimer
, “
Likely near-term solar-thermal water splitting technologies
,”
Int. J. Hydrogen Energy
29
,
1587
1599
(
2004
).
4.
C.
Graves
,
S.D.
Ebbesen
,
M.
Mogensen
, and
K. S.
Lackner
, “
Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy
,”
Renew. Sustain. Energy Rev.
15
,
1
23
(
2011
).
5.
J. A.
Wurzbacher
,
C.
Gebald
, and
A.
Steinfeld
, “
Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel
,”
Energy Environ. Sci.
4
,
3584
(
2011
).
6.
V.
Nikulshina
,
C.
Gebald
, and
A.
Steinfeld
, “
CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor
,”
Chem. Eng. J.
146
,
244
248
(
2009
).
7.
K. S.
Lackner
, “
Capture of carbon dioxide from ambient air
,”
Eur. Phys. J. Spec. Top.
176
,
93
106
(
2009
).
8.
C.
Gebald
,
J. A.
Wurzbacher
,
P.
Tingaut
,
T.
Zimmermann
, and
A.
Steinfeld
, “
Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air
,”
Env. Sci Technol
45
,
9101
9108
(
2011
).
9.
A. H.
McDaniel
,
A.
Ambrosini
,
E. N.
Coker
,
J.E.
Miller
,
W.C.
Chueh
,
R.
O’Hayre
, and
J.
Tong
, “
Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production
,”
Energy Procedia
49
,
2009
2018
(
2013
).
10.
W. C.
Chueh
and
S. M.
Haile
, “
A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation
,”
Philos Trans. A Math Phys Eng Sci
368
,
3269
3294
(
2010
).
11.
M.
Zinkevich
,
D.
Djurovic
, and
F.
Aldinger
, “
Thermodynamic modelling of the cerium-oxygen system
,”
Solid State Ionics
177
,
989
1001
(
2006
).
12.
J. R.
Scheffe
and
A.
Steinfeld
, “
Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Productionm
,”
Energy & Fuels
26
,
1928
1936
(
2012
).
13.
R. J.
Panlener
,
R. N.
Blumenthal
, and
J. E.
Garnier
, “
A thermodynamic study of nonstoichiometric cerium dioxide
,”
J. Phys. Chem. Solids
36
,
1213
1222
(
1975
).
14.
W. C.
Chueh
,
C.
Falter
,
M.
Abbott
,
D.
Scipio
,
P.
Furler
,
S. M.
Haile
, and
A.
Steinfeld
, “
High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria
,”
Science
330
,
1797
1801
(
2010
).
15.
P.
Furler
,
J.R.
Scheffe
, and
A.
Steinfeld
, “
Syngas production by simultaneous splitting of H2O and CO2via ceria redox reactions in a high-temperature solar reactor
,”
Energy Environ. Sci.
5
,
6098
(
2012
).
16.
P.
Furler
,
J. R.
Scheffe
,
M.
Gorbar
,
L.
Moes
,
U.
Vogt
, and
A.
Steinfeld
, “
Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system
,”
Energy & Fuels
26
,
7051
7059
(
2012
).
17.
D.
Marxer
,
P.
Furler
,
J. R.
Scheffe
,
H.
Geerlings
,
C.
Falter
,
V.
Batteiger
,
A.
Sizmann
, and
A.
Steinfeld
, “
Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2
,”
Energy & Fuels
29
,
3241
3250
(
2015
).
18.
P.
Furler
,
J. R.
Scheffe
,
D.
Marxer
,
M.
Gorbar
,
A.
Bonk
,
U.
Vogt
, and
A.
Steinfeld
, “
Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities
,”
Phys. Chem. Chem. Phys.
16
,
10503
11
(
2014
).
19.
W. T.
Welford
and
R.
Winston
, “
High Collection Nonimaging Optics
,”
Academic Press
,
San Diego
,
1989
.
20.
J.
Petrasch
,
P.
Coray
,
A.
Meier
,
M.
Brack
,
P.
Häberling
,
D.
Wuillemin
, and
A.
Steinfeld
, “
A Novel 50kW 11,000 suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
J. Sol. Energy Eng.
129
,
405
(
2007
).
21.
K.
Schwartzwalder
and
A.
Somers
, US Patent No. 3090094 A (
1961
).
22.
U.
Vogt
,
M.
Gorbar
,
P.
Dimopoulos-Eggenschwiler
,
A.
Broenstrup
,
G.
Wagner
, and
P.
Colombo
, “
Improving the properties of ceramic foams by a vacuum infiltration process
,”
J. Eur. Ceram. Soc.
30
,
3005
3011
(
2010
).
This content is only available via PDF.