Since the end of EDA, the design of the Electron Cyclotron Heating and Current Drive (ECH&CD) system has been modified to respond to progress in physics understanding and change of interface conditions. Nominal RF power of 20 MW is shared by four upper launchers or one equatorial launcher RF beams are steered by front steering mirrors providing wide sweeping angle for the RF beam. DC high voltage power supply may be composed of IGBT pulse step modulators because of high frequency modulation and design flexibility to three different types of 170 GHz gyrotrons provided by three parties. The RF power from the 170 GHz gyrotron is transmitted to the launcher by 63.5 mmφ corrugated waveguide line and remotely switched by a waveguide switch between the upper launcher and the equatorial launcher. The ECH&CD system has also a start‐up sub‐system for assist of initial discharge composed of three 127.5 GHz gyrotrons and a dedicated DC high voltage power supply. Three of transmission lines are shared between 170 GHz gyrotron and 127.5 GHz gyrotron so as to inject RF beam for the start‐up through the equatorial launcher. R&Ds of components for high power long pulse and mirror steering mechanism have been on‐going in the parties to establish a reliable ITER ECH&CD system.

This content is only available via PDF.
You do not currently have access to this content.