A sampling silicon‐tungsten imaging calorimeter has been designed and built for the PAMELA satellite‐borne experiment. The calorimeter has been designed to identify antiprotons from an electron background and positrons in a background of protons with a high efficiency and rejection power. In this work we present the identification capabilities of the calorimeter obtained using both Monte Carlo and test beam data. We show that the calorimeter provides a proton rejection factor of at least 105 while keeping a high efficiency in selecting electrons and positrons. Hence, the calorimeter will fulfill the identification power needed to reach the primary scientific objectives of PAMELA, that are the measurement of the flux of antiprotons, positrons and light isotopes in the cosmic radiation.

This content is only available via PDF.
You do not currently have access to this content.