Electron acceleration at quasi‐perpendicular shocks is a key problem in collisionless shock physics, in the context of the Earth’s bow shock and other astrophysical situations. Fast Fermi acceleration, or reflection by adiabatic mirroring is a robust mechanism, but predicts that the highest energies are produced over a very small shock angle range, close to perpendicular where the reflected flux is decreasingly small. Pitch angle scattering has been shown to be effective in broadening the parameter range where this process is important. Using 2D hybrid simulations and electron test particle simulations, we show that ripples and oscillations of the shock surface are efficient scatters of suprathermal electrons. The results indicate that power law energy distributions can be obtained for both upstream and downstream energetic electrons, over a reasonably wide range of shock angles.

This content is only available via PDF.
You do not currently have access to this content.