Retrodictive quantum states are states that propagate backwards in time from a measurement event. Although retrodictive quantum mechanics appears to be very different from the usual predictive formalism, in that propagation of states into the past appears to violate causality, this is not so. Indeed causality is not manifest in the time direction of propagation of quantum states at all. Instead, causality is ensured by the different normalization conditions applied to the preparation and measurement device operators. It is this difference that introduces the arrow of time into quantum mechanics. Retrodictive states are useful for applications such as measurement, predictive quantum state engineering and quantum communication. Here we show how any optical retrodictive state that can be expressed to a good approximation in a finite‐dimensional Hilbert space can be generated from predictive coherent states, a lossless multiport device and photodetectors. The composition of the retrodictive state can be controlled by adjusting the input predictive coherent states. This allows, for example, projection synthesis for an optical state to be achieved with the exotic reciprocal binomial reference state replaced by a simple coherent state.

This content is only available via PDF.
You do not currently have access to this content.