Extremely thin films are required for solar sails: possibly too fragile for handling, storage, and deployment. This work explores the use of photovolatile polymer coatings for the reinforcement of solar sails. The concept is that thick polymer films may be used to support and deploy thin films, but then decompose in sunlight (photo-degrade) and evaporate into space leaving the fully deployed sail at a very low mass. Additionally, these remarkable polymers degrade in the presence of (solar) ultraviolet light to result in gaseous products. As the volatile gas departs from the substrate, a high percentage of mass is lost until an ultra-thin solar sail remains. In addition to mass loss, the photovolatile coating produces a thrust that augments the photon momentum propulsion and results in a “propellantless” system with enhanced specific impulse. The coating also provides the strength and durability to protect the fragile sail film during the packing, launching and deployment phases of the mission. This approach will result in films with areal densities of 1 to 5 grams per square meter, high durability, and passive propulsion capability. The developed technology will enable the fabrication of solar sails and also possibly sunshades booms, and other inflatable spacecraft currently included in programs coming out of many organizations.

This content is only available via PDF.
You do not currently have access to this content.