The exponential increase in electrical energy demand has raised the need for renewable energy and energy-efficient devices. Indium gallium nitride (InGaN) alloys with direct and tunable bandgap from 0.70 eV to 3.42 eV, which can cover the whole solar spectrum, are promising materials for high-efficiency solar cells. However, this application is confronted with the difficulty of producing good quality indium (In)-rich and p-type InGaN epilayers. This article will first present an overview of the InGaN semiconductor characteristics that make it suitable for high-efficiency solar cell applications. Next, the key challenges for producing high-quality In-rich and p-type InGaN epitaxial films will be discussed. Finally, the recent development of InGaN epitaxial growth and the research on InGaN-based solar cells at the Institute of Nano Optoelectronics Research and Technology will be presented.

1.
Photovoltaic Research. (n.d.). Interactive Best Research-Cell Efficiency Chart. Retrieved October 19, 2023, from https://www.nrel.gov/pv/interactive-cell-efficiency.html
2.
J.
Ramanujam
and
U. P.
Singh
,
Energy Environ. Sci.
10
,
1306
1319
(
2017
).
4.
Y.
Zhao
,
M.
Xu
,
X.
Huang
,
J.
Lebeau
,
T.
Li
,
D.
Wang
,
H.
Fu
,
K.
Fu
,
X.
Wang
,
J.
Lin
, and
H.
Jiang
,
Mater. Today Energy
31
,
101229
(
2023
).
5.
D. H.
Lien
,
Y. H.
Hsiao
,
S. G.
Yang
,
M. L.
Tsai
,
T. C.
Wei
,
S. C.
Lee
, and
J. H.
He
,
Nano Energy
11
,
104
109
(
2015
).
6.
J.
Wu
, and
W.
Walukiewicz
,
Superlattices Microstruct.
34
,
63
75
(
2003
).
7.
Y. K.
Kuo
,
B. T.
Liou
,
S. H.
Yen
, and
H. Y.
Chu
,
Opt. Commun.
237
,
363
369
(
2004
).
8.
M. A.
Green
and
M.
Keevers
,
Prog. Photovoltaics
3
,
189
92
(
1995
).
9.
R.
Kour
,
S.
Arya
,
S.
Verma
,
A.
Singh
,
P.
Mahajan
, and
A.
Khosla
,
ECS J. Solid State Sci. Technol.
9
,
015011
(
2020
).
10.
O.
Jani
,
I.
Ferguson
,
C.
Honsberg
,
S.
Kurtz
,
Appl. Phys. Lett.
91
,
132117
(
2007
).
11.
A.
Rehman
,
S. H.
Lee
, and
S. H.
Lee
,
J. Korean Phys. Soc.
68
,
593
598
(
2016
).
12.
S. S.
Dipta
and
A.
Uddin
,
Energy Technol.
2021
,
2100560
(
2021
).
13.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
W.
Shan
,
J. W.
Ager
,
E. E.
Haller
,
H.
Lu
,
W. J.
Schaff
,
W. K.
Metzger
, and
S.
Kurtz
,
J. Appl. Phys.
94
,
6477
6482
(
2003
).
14.
X.
Ren
,
J.
Li
,
D.
Gao
,
L.
Wu
, and
G.
Pei
,
Renew. Energy
168
,
11
20
(
2021
).
15.
A. D.
Vos
,
Endoreversible Thermodynamics of Solar Energy Conversion
(
Oxford University Press
,
Oxford, y1992
), p.
90
.
16.
J.
Mickevičius
,
D.
Dobrovolskas
,
T.
Steponavičius
,
T.
Malinauskas
,
M.
Kolenda
,
A.
Kadys
, and
G.
Tamulaitis
,
Appl. Surf. Sci.
427
,
1027
1032
(
2018
).
17.
Y. J.
Sun
,
O.
Brandt
,
B.
Jenichen
, and
K. H.
Plog
,
Appl. Phys. Lett.
83
,
5178
5180
(
2003
).
18.
M.
Mesrine
,
N.
Grandjean
, and
J.
Massies
,
Appl. Phys. Lett.
72
,
350
352
(
1998
).
19.
A.
Wakahara
,
T.
Tokuda
,
X. Z.
Dang
,
S.
Noda
, and
A.
Sasaki
,
Appl. Phys. Lett.
71
,
906
908
(
1997
).
20.
R.
Dahal
,
B.
Pantha
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
94
,
063505
(
2009
).
21.
C. A.
Chang
,
T. Y.
Tang
,
P. H.
Chang
,
N. C.
Chen
, and
C. T.
Liang
,
Jpn. J. Appl. Phys.
46
,
2840
2843
(
2007
).
22.
K.
Kumakura
,
T.
Makimoto
, and
N.
Kobayashi
,
J. Appl. Phys.
93
,
3370
3375
(
2003
).
23.
A. K.
Tan
,
N. A.
Hamzah
, and
S. S.
Ng
,
Defect Diffus. Forum
425
,
9
14
(
2023
).
24.
A. K.
Tan
,
N. A.
Hamzah
,
M. A.
Ahmad
,
S. S.
Ng
, and
Z.
Hassan
,
J. Alloy. Compd.
936
,
168236
(
2023
).
25.
Zywietz
,
T.
,
Neugebauer
,
J.
and
Scheffler
,
M.
Appl. Phys. Lett.
73
,
487
489
(
1998
).
26.
Y.
Guo
,
X. L.
Liu
,
H. P.
Song
,
A. L.
Yang
,
X. Q.
Xu
,
G. L.
Zheng
,
H. Y.
Wei
,
S. Y.
Yang
,
Q. S.
Zhu
, and
Z. G.
Wang
,
Appl. Surf. Sci.
256
,
3352
3356
(
2010
).
27.
H.
Wang
,
D. S.
Jiang
,
J. J.
Zhu
,
D. G.
Zhao
,
Z. S.
Liu
,
Y. T.
Wang
,
S. M.
Zhang
, and
H.
Yang
,
Semicond. Sci. Technol.
24
,
055001
(
2009
).
28.
B.R.
Jampana
,
A.G.
Melton
,
M.
Jamil
,
N.N.
Faleev
,
R.L.
Opila
,
I.T.
Ferguson
, and
C. B.
Honsberg
,
Electron. Device Lett. IEEE
31
,
32
34
(
2010
).
29.
A. K.
Tan
,
H. U.
Manzoor
,
N. A.
Hamzah
,
M. A.
Ahmad
,
S. S.
Ng
, and
Z.
Hassan
,
Optik
271
,
170095
(
2022
).
30.
H. U.
Manzoor
,
M.
Zawawi
,
M. Z.
Pakhuruddin
,
S. S.
Ng
, and
Z.
Hassan
,
Physica B
622
,
413339
(
2021
).
31.
H. U.
Manzoor
,
A. K.
Tan
,
S. S.
Ng
, and
Z.
Hassan
,
Sains Malaysiana
51
,
1567
1576
(
2022
)
32.
S. O. S.
Hamady
,
N.
Fressengeas
,
C.
Chevallier
,
Q.
Kieffer
,
Z.
Hassan
,
M. A.
Ahmad
,
W. F.
Lim
, and
S. S.
Ng
,
J. Phys. Sci.
30
,
199
205
(
2019
).
33.
S.S.
Jeon
,
S.A.
Amin
, and
M.T.
Hasan
,
JoSDC
,
3
,
1
5
(
2016
).
34.
D.
Parajuli
,
D. Kumar
Shah
,
K.C.
Devendra
,
S.
Kumar
,
M.
Park
, and
B.
Pant
,
Electrochem.
3
,
407
415
(
2022
).
35.
S.
Hussain
,
Md. T.
Prodhan
, and
Md. M.
Rahman
,
Semicond. Phys. Quantum Electron. Optoelectron.
,
24
,
192
199
(
2021
).
36.
L.
Yang
, and
W.
Cao
,
J. Phys. Conf. Ser.
,
2614
,
012008
(
2023
).
This content is only available via PDF.
You do not currently have access to this content.