In this study, chemical solution-grown ZnO (CS-ZnO) nanomaterials were prepared via a benign, ultrasonicated low-temperature solution immersion route. The humidity sensor was constructed using CS-ZnO nanomaterials by a simple brush printing technique. This research aimed to explore the humidity sensing attributes and investigate their correlation to surface, structural, and chemical association. The structural (i.e., crystallinity, morphology, and phonon characteristics), and surface characteristics exhibited in the CS-ZnO nanomaterials were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM with EDS), Raman spectroscopy, X-ray photoelectron spectrometer (XPS) and reflection electron energy-loss spectroscopy (REELS). The humidity sensor utilizing CS-ZnO nanomaterials exhibited acceptable resistance changes along with an adequate sensor resistance ratio and sensitivity of 33.89 ± 2.25 and 4.95 ± 0.11 MΩ/%RH, respectively. The sensor demonstrated a maximum sensing response of 97.08 ± 0.11 and reliable repeatability behaviour within the relative humidity range of 40 to 90 % RH. The preparation of the CS-ZnO as a sensing material provides a unique direction for designing a cost-effective and highly sensitive humidity monitoring sensor.

1.
G.
Lei
et al, “
Thin films of tungsten oxide materials for advanced gas sensors
,”
Sensors Actuators, B Chem.
, vol.
341
, no. March, p.
129996
,
2021
.
2.
M. H.
Mamat
et al, “
Heterojunction of SnO2 nanosheet/arrayed ZnO nanorods for humidity sensing
,”
Mater. Chem. Phys.
, vol.
288
, no. June, p.
126436
,
2022
.
3.
L.
Xu
et al, “
Coolmax/graphene-oxide functionalized textile humidity sensor with ultrafast response for human activities monitoring
,”
Chem. Eng. J.
, vol.
412
, no. July
2020
, p.
128639
, May
2021
.
4.
X.
Guan
et al, “
A flexible humidity sensor based on self-supported polymer film
,”
Sensors Actuators B Chem.
, vol.
358
, no. November 2021, p.
131438
, May
2022
.
5.
W.
Bao
,
F.
Chen
,
H.
Lai
,
S.
Liu
, and
Y.
Wang
, “
Wearable breath monitoring based on a flexible fiber-optic humidity sensor
,”
Sensors Actuators B Chem.
, vol.
349
, no. July, p.
130794
,
2021
.
6.
Y.
Su
et al, “
Surface acoustic wave humidity sensor based on three-dimensional architecture graphene/PVA/SiO2 and its application for respiration monitoring
,”
Sensors Actuators, B Chem.
, vol.
308
, no. September 2019, p.
127693
,
2020
.
7.
Z.
Li
et al, “
Sb-doped WO3 based QCM humidity sensor with self-recovery ability for real-time monitoring of respiration and wound
,”
Sensors Actuators B Chem.
, vol.
361
, no. December 2021, pp.
1
10
,
2022
.
8.
C. C.
Yang
et al, “
Dielectric Properties of Zinc Oxide Sensing Film with Nitrogen Doped in Capacitance Relative Humidity Sensor
,”
IEEE Trans. Dielectr. Electr. Insul.
, vol.
29
, no.
2
, pp.
506
509
,
2022
.
9.
A. S.
Pathan
,
D. L.
Gapale
,
S. V
Bhosale
,
A. S.
Landge
,
S. R.
Jadkar
, and
S. A.
Arote
, “
Studies on resistive-type humidity sensing properties of copper-zinc mixed metal oxide nanostructures
,”
Inorg. Chem. Commun.
, vol.
153
, no. April, p.
110824
, Jul.
2023
.
10.
A.
Kumar
,
G.
Gupta
,
K.
Bapna
, and
D. D.
Shivagan
, “
Semiconductor-metal-oxide-based nano-composites for humidity sensing applications
,”
Mater. Res. Bull.
, vol.
158
, no. October 2022, p.
112053
,
2023
.
11.
A. S.
Ismail
et al, “
Structural modification of ZnO nanorod array through Fe-doping: Ramification on UV and humidity sensing properties
,”
Nano-Structures and Nano-Objects
, vol.
18
, p.
100262
,
2019
.
12.
M. H.
Mamat
,
N. N.
Hafizah
, and
M.
Rusop
, “
Fabrication of thin, dense and small-diameter zinc oxide nanorod array-based ultraviolet photoconductive sensors with high sensitivity by catalyst-free radio frequency magnetron sputtering
,”
Mater. Lett.
, vol.
93
, pp.
215
218
,
2013
.
13.
M. M.
Yusoff
et al, “
Growth of titanium dioxide nanorod arrays through the aqueous chemical route under a novel and facile low-cost method
,”
Mater. Lett.
, vol.
164
, pp.
294
298
,
2016
.
14.
V. N.
Kalpana
and
V. Devi
Rajeswari
, “
A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs
,”
Bioinorg. Chem. Appl.
, vol.
2018
,
2018
.
15.
Y.
Chen
,
H.
Ding
, and
S.
Sun
, “
Preparation and characterization of ZnO nanoparticles supported on amorphous SiO2
,”
Nanomaterials
, vol.
7
, no.
8
,
2017
.
16.
K. C.
Dubey
,
A.
Zaidi
, and
R. R.
Awasthi
, “
Environmentally Benign Structural, Topographic, and Sensing Properties of Pure and Al-Doped ZnO Thin Films
,”
ACS Omega
, vol.
7
, no.
33
, pp.
28946
28954
, Aug.
2022
.
17.
Y. B.
Hahn
, “
Zinc oxide nanostructures and their applications
,”
Korean J. Chem. Eng.
, vol.
28
, no.
9
, pp.
1797
1813
,
2011
.
18.
M. L.
de Peres
,
R. de A.
Delucis
,
S. C.
Amico
, and
D. A.
Gatto
, “
Zinc oxide nanoparticles from microwave-assisted solvothermal process: Photocatalytic performance and use for wood protection against xylophagous fungus
,”
Nanomater. Nanotechnol.
, vol.
9
, pp.
1
8
,
2019
.
19.
F.
Miao
,
Y.
Han
, and
B.
Tao
, “
ZnO/MoS2/rGO Nanocomposite Non-Contact Passive and Chip-Less LC Humidity Sensor
,”
IEEE Sens. J.
, vol.
22
, no.
14
, pp.
13891
13897
,
2022
.
20.
M.
Velumani
,
S. R.
Meher
, and
Z. C.
Alex
, “
Composite metal oxide thin film based impedometric humidity sensors
,”
Sensors Actuators, B Chem.
, vol.
301
, no. September, p.
127084
,
2019
.
21.
K.
Chaudhary
et al, “
Graphene oxide and reduced graphene oxide supported ZnO nanochips for removal of basic dyes from the industrial effluents
,”
Fullerenes Nanotub. Carbon Nanostructures
, vol.
29
, no.
11
, pp.
915
928
,
2021
.
22.
P. J,
N.
Kottam
, N. G, and R. A, “
Visible light active ZnO nanostructures prepared by simple co-precipitation method
,”
Photonics Nanostructures - Fundam. Appl.
, vol.
39
, no. September 2019, p.
100781
,
2020
.
23.
A. S. R. A.
Subki
et al, “
Optimization of Aluminum Dopant Amalgamation Immersion Time on Structural, Electrical, and Humidity-Sensing Attributes of Pristine ZnO for Flexible Humidity Sensor Application
,”
Chemosensors
, vol.
10
, no.
11
, p.
489
, Nov.
2022
.
24.
A. S. R. A.
Subki
et al, “
Effects of varying the amount of reduced graphene oxide loading on the humidity sensing performance of zinc oxide/reduced graphene oxide nanocomposites on cellulose filter paper
,”
J. Alloys Compd.
, vol.
926
, p.
166728
,
2022
.
25.
J.
Jayachandiran
et al, “
Synthesis and Electrochemical Studies of rGO/ZnO Nanocomposite for Supercapacitor Application
,”
J. Inorg. Organomet. Polym. Mater.
, vol.
28
, no.
5
, pp.
2046
2055
,
2018
.
26.
A.
Aljaafari
,
F.
Ahmed
,
C.
Awada
, and
N. M.
Shaalan
, “
Flower-Like ZnO Nanorods Synthesized by Microwave-Assisted One-Pot Method for Detecting Reducing Gases: Structural Properties and Sensing Reversibility
,”
Front. Chem.
, vol.
8
, no. July, pp.
1
11
,
2020
.
27.
C.
Peng
et al, “
Synthesis of three-dimensional flower-like hierarchical ZnO nanostructure and its enhanced acetone gas sensing properties
,”
J. Alloys Compd.
, vol.
654
, pp.
371
378
,
2016
.
28.
P.
Chamoli
,
R. K.
Shukla
,
A. N.
Bezbaruah
,
K. K.
Kar
, and
K. K.
Raina
, “
Microwave-assisted rapid synthesis of honeycomb core-ZnO tetrapods nanocomposites for excellent photocatalytic activity against different organic dyes
,”
Appl. Surf. Sci.
, vol.
555
, no. January, p.
149663
,
2021
.
29.
R.
Ramírez-Amador
et al, “
The influence of deposition time on the structural, morphological, optical and electrical properties of ZnO-RgO nanocomposite thin films grown in a single step by USP
,”
Crystals
, vol.
10
, no.
2
,
2020
.
30.
G.
Qu
et al, “
Graphene-Modified ZnO Nanostructures for Low-Temperature NO 2 Sensing
,”
ACS Omega
, vol.
4
, no.
2
, pp.
4221
4232
,
2019
.
31.
P. J.
Cao
et al, “
Down to ppb level NO2 detection by ZnO/rGO heterojunction based chemiresistive sensors
,”
Chem. Eng. J.
, vol.
401
, no.
2
, p.
125491
,
2020
.
32.
H.
Zhang
,
S.
Yu
,
C.
Chen
,
J.
Zhang
,
J.
Liu
, and
P.
Li
, “
Effects on structure, surface oxygen defects and humidity performance of Au modified ZnO via hydrothermal method
,”
Appl. Surf. Sci.
, vol.
486
, no. April, pp.
482
489
,
2019
.
33.
Q.
Li
et al, “
Effects of Sm implantation on the structure and magnetic properties of polar ZnO films
,”
J. Alloys Compd.
, vol.
894
,
2022
.
34.
S.
Das
,
S.
Roy
,
T. S.
Bhattacharya
, and
C. K.
Sarkar
, “
Efficient Room Temperature Hydrogen Gas Sensor Using ZnO Nanoparticles-Reduced Graphene Oxide Nanohybrid
,”
IEEE Sens. J.
, vol.
21
, no.
2
, pp.
1264
1272
,
2021
.
35.
F.
Xie
et al, “
Highly sensitive electrochemical detection of Hg(II) promoted by oxygen vacancies of plasma-treated ZnO: XPS and DFT calculation analysis
,”
Electrochim. Acta
, vol.
426
, no. May, p.
140757
,
2022
.
36.
E.
Fazio
,
A. M.
Mezzasalma
,
G.
Mondio
,
T.
Serafino
,
F.
Barreca
, and
F.
Caridi
, “
Optical and structural properties of pulsed laser ablation deposited ZnO thin film
,”
Appl. Surf. Sci.
, vol.
257
, no.
6
, pp.
2298
2302
,
2011
.
37.
M.
Guezzoul
et al, “
Chemical, morphological and optical properties of undoped and Cu-doped ZnO thin films submitted to UHV treatment
,”
Appl. Surf. Sci.
, vol.
520
, no. March, p.
146302
, Aug.
2020
.
38.
Z. H.
Zhang
,
X. Y.
Qi
,
J. K.
Jian
, and
X. F.
Duan
, “
Investigation on optical properties of ZnO nanowires by electron energy-loss spectroscopy
,”
Micron
, vol.
37
, no.
3
, pp.
229
233
,
2006
.
39.
M. S.
Halati
et al, “
Electronic and optical properties of ZnSe by theoretical simulation TB-mBJ (Tran-Blaha modified Becke Johnson) associated to analysis techniques XPS (X-Ray Photoelectron Spectroscopy); REELS (Reflective Electron Energy Loss Spectroscopy) and PLS (Photolum
,”
Appl. Surf. Sci.
, vol.
566
, no. April, pp.
20
26
,
2021
.
40.
Y. R.
Denny
et al, “
Electronic and optical properties of hafnium indium zinc oxide thin film by XPS and REELS
,”
J. Electron Spectros. Relat. Phenomena
, vol.
185
, no.
1–2
, pp.
18
22
,
2012
.
41.
H.
Jin
,
S. K.
Oh
,
H. J.
Kang
,
S. W.
Lee
,
Y. S.
Lee
, and
M. H.
Cho
, “
Band alignment in ultrathin Hf-Al-O/Si interfaces
,”
Appl. Phys. Lett.
, vol.
87
, no.
21
, pp.
1
3
,
2005
.
42.
D.
Tahir
,
S.
Ilyas
,
B.
Abdullah
,
B.
Armynah
, and
H. J.
Kang
, “
Electronic properties of composite iron (II, III) oxide (Fe3O4) carbonaceous absorber materials by electron spectroscopy
,”
J. Electron Spectros. Relat. Phenomena
, vol.
229
, no. July, pp.
47
51
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.