This study models an electric cement cooker and investigates the natural convective heat transfer mechanisms (from heat source to receiver) inside the system for different heat source arrangements. Two scenarios are examined: one with a single heat source at the midpoint of the cooker and the other with four identical pin-shaped heat sources evenly distributed along the bottom wall, both with isothermal conditions. For parametric analysis, the solution of the governing PDEs, such as for continuity, momentum, and energy equations, is obtained by using FEM scheme. Numerical simulations are conducted for Rayleigh numbers ranging from 103 to 107, with a constant Prandtl number of 0.71. Additionally, an aspect ratio of 0.1 is considered for the conducting body, with a conductivity ratio of 20. After a thorough qualitative and quantitative analysis, it has been confirmed that the second scenario consistently yields a higher convective heat transfer over the first configuration for the range of Ra > 106.

1.
N.
Ben Cheikh
,
B.
Ben Beya
, and
T.
Lili
,
Int. Commun. Heat Mass Transf.
34
,
369
379
(
2007
).
2.
B.
Calcagni
,
F.
Marsili
, and
M.
Paroncini
,
Appl. Therm. Eng.
25
,
2522
2531
(
2005
).
3.
M.A.R.
Sharif
and
T.R.
Mohammad
,
Int. J. Therm. Sci.
44
,
865
878
(
2005
).
4.
J.R.
Lee
and
M.Y.
Ha
,
Int. J. Heat Mass Transf.
49
,
2684
2702
(
2006
).
5.
S.
Saravanan
and
C.
Sivaraj
,
Int. J. Heat Mass Transf.
54
,
2820
2828
(
2011
).
6.
G.
Saha
,
S.
Saha
,
M.Q.
Islam
,
M.R.
Akhanda
,
J. Naval Architecture Marine Eng.
4
,
1
13
(
2007
).
7.
J.Y.
Oh
,
M.Y.
Ha
, and
K.C.
Kim
,
Numer. Heat Transf. Part A Appl.
31
,
289
303
(
1997
).
8.
M.Y.
Ha
,
M.J.
Jung
, and
Y.S.
Kim
,
Numer. Heat Transf. Part A Appl.
35
,
415
433
(
1999
).
9.
Q.H.
Deng
,
Int. J. Heat Mass Transf.
51
,
5949
5957
(
2008
).
10.
G.R.
Ahmed
and
M.M.
Yovanovich
,
J. Thermophys. Heat Transf.
6
,
121
127
(
1992
).
11.
M.
Corcione
,
Int. J. Therm. Sci.
42
,
199
208
(
2003
).
12.
A.
Belazizia
,
Adv. Theor. Appl. Mech
5
,
179
190
(
2012
).
13.
D.A.
Kaminski
and
C.
Prakash
,
Int. J. Heat Mass Transf.
29
,
1979
1988
(
1986
).
14.
M.
Khatamifar
,
W.
Lin
,
S.W.
Armfield
,
D.
Holmes
, and
M.P.
Kirkpatrick
,
Int. Commun. Heat Mass Transf.
81
,
92
103
(
2017
).
15.
K.
Kahveci
,
Numer. Heat Transf. Part A Appl.
51
,
979
1002
(
2007
).
16.
D.
Misra
and
A.
Sarkar
,
Comput. Methods Appl. Mech. Eng.
141
,
205
219
(
1997
).
17.
D.
Angeli
,
P.
Levoni
, and
G.S.
Barozzi
,
Int. J. Heat Mass Transf.
51
,
553
565
(
2008
).
18.
S.H.
Hussain
and
A.K.
Hussein
,
Int. Commun. Heat Mass Transf.
37
,
1115
1126
(
2010
).
19.
C.C.
Liao
and
C.A.
Lin
,
Phys. Fluids
27
, (
2015
).
20.
Y.G.
Park
,
M.Y.
Ha
,
C.
Choi
, and
J.
Park
,
Int. J. Heat Mass Transf.
77
,
501
518
(
2014
).
21.
B.S.
Kim
,
D.S.
Lee
,
M.Y.
Ha
, and
H.S.
Yoon
,
Int. J. Heat Mass Transf.
51
,
1888
1906
(
2008
).
22.
J.
Lu
,
B.
Shi
,
Z.
Guo
, and
Z.
Chai
,
Front. Energy Power Eng. China
3
,
373
380
(
2009
).
23.
S.M.
Dash
and
T.S.
Lee
,
Numer. Heat Transf. Part A Appl.
68
,
686
710
(
2015
).
24.
A.
Raji
,
M.
Hasnaoui
, and
P.
Vasseur
,
6
,
122
130
(
2008
).
25.
J.
Tichy
and
A.
Gadgil
,
J. Heat Transfer
104
,
103
110
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.