This paper presents a comprehensive numerical analysis and characteristics evaluation of hybrid perovskite solar cells (PSCs) utilizing formamidinium tin iodide (FASnI3) as a lead-free alternative. Motivated by the high-efficiency potential of PSCs (exceeding 25% PCE) but hindered by stability concerns and lead toxicity, this study leverages SCAPS-1D software to simulate and optimize FASnI3−based PSC devices. Emphasis is placed on identifying non-toxic and stable materials for all device layers, including the Transparent Conducting Oxide (TCO), Electron Transport Layer (ETL), and Hole Transport Layer (HTL). A novel device structure is proposed with optimized thicknesses of the layers and its impact on the parameters for performance evaluation, including short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and overall power conversion efficiency (PCE) is investigated. The optimized structure, featuring front glass/FTO/SnO2/FASnI3/Cu2O/ back contact, demonstrates promising results with a simulated Voc of 1.12 V, Jsc of 27.67 mA/cm2, FF of 88.35%, and a remarkable PCE of 27.38%. These findings highlight the potential of FASnI3 and novel materials for achieving high-performance, lead-free, and environment-friendly PSCs.

1.
Md. S.
Chowdhury
et al, “
An overview of solar photovoltaic panels’ end-of-life material recycling
,”
Energy Strategy Rev.
, vol.
27
, p.
100431
, Jan.
2020
, doi:
2.
Kojima
A
,
Teshima
K
,
Shirai
Y
,
Miyasaka
T
, 2009.
Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
,
J. Am. Chem. Soc.
,
131
(
2009
),
6050
6051
.
3.
Yang
S.
2017
.
Dimensional Engineering: Another Approach to Resolving the Stability Issue of High-Efficiency Perovskite Solar Cells
.
Science Trends.
4.
Research Cell Efficiency Records, NREL
, https://www.nrel.gov/pv/cell-efficiency.html (accessed: 11 July 2022)
5.
D.
Ompong
and
M.
Clements
, “
Optimization of formamidinium-based perovskite solar cell using SCAPS-1D
,”
Results in Optics
, vol.
14
, p.
100611
, Feb.
2024
, doi: .
6.
D.
Liu
et al, “
SnO2-Based Perovskite Solar Cells: Configuration Design and Performance Improvement
,”
Solar RRL
, vol.
3
, no.
2
, Jan.
2019
, doi: .
7.
Y.
El Arfaoui
,
M.
Khenfouch
, and
N.
Habiballah
, “
Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation
,”
Results in Optics
, vol.
13
, p.
100554
, Dec.
2023
, doi: .
8.
W.
Zhu
,
S.
Wang
,
X.
Zhang
,
A.
Wang
,
C.
Wu
, and
F.
Hao
, “
Ion Migration in Organic-Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives
,”
Small
, vol.
18
, no.
15
, p.
2105783
, Apr.
2022
, doi: .
9.
Tajreen
Ferdoush
,
C.
Saha
,
Mahdee
Nafis
, and
M. Mofazzal
Hossain
, “
Optimization and Performance Improvement of CsSnGeI3 All-Inorganic Lead-Free Thin-Film Perovskite Solar Cell through Numerical Simulation
,” Oct.
2022
, doi: .
10.
F.
Anwar
,
R.
Mahbub
,
S. S.
Satter
, and
S. M.
Ullah
, “
Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance
,”
International Journal of Photoenergy
, vol.
2017
, pp.
1
9
,
2017
, doi: .
11.
A.
Raj
,
M.
Kumar
,
H.
Bherwani
,
A.
Gupta
, and
A.
Anshul
, “
Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation
,”
Journal of Vacuum Science & Technology B
, vol.
39
, no.
1
, p.
012401
, Jan.
2021
, doi: .
12.
Y.
El Arfaoui
,
M.
Khenfouch
, and
N.
Habiballah
, “
Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation
,”
Results in Optics
, vol.
13
, p.
100554
, Dec.
2023
, doi:
13.
S.
Karthick
,
S.
Velumani
, and
J.
Bouclé
, “
Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance
,”
Solar Energy
, vol.
205
, pp.
349
357
, Jul.
2020
, doi: .
14.
H.
MallaHasan
and
Ö.
Onay
, “
Investigation of the effect of different factors on the performance of several perovskite solar cells: a simulation study by SCAPS
,”
Eur. j., eng. sci., tech.
, vol.
5
, no.
1
, pp.
20
38
, Apr.
2022
, doi: .
15.
M.
Mottakin
et al, “
Design and Modelling of Eco-Friendly CH3NH3SnI3-Based Perovskite Solar Cells with Suitable Transport Layers
,”
Energies
, vol.
14
, no.
21
, p.
7200
, Nov.
2021
, doi:
16.
S.
Yasin
,
T.
Al Zoubi
, and
M.
Moustafa
, “
Design and simulation of high efficiency lead-free heterostructure perovskite solar cell using SCAPS-1D
,”
Optik
, vol.
229
, p.
166258
, Mar.
2021
, doi: .
17.
S.
Jamal
,
A. D.
Khan
, and
A. D.
Khan
, “
High performance perovskite solar cell based on efficient materials for electron and hole transport layers
,”
Optik
, vol.
218
, p.
164787
, Sep.
2020
, doi: .
This content is only available via PDF.
You do not currently have access to this content.