A promising option for producing energy sustainably is the Solid Oxide Fuel Cell (SOFC), which generates power in an environmentally benign and very cost-effective manner. SOFCs appear as a practical substitute as Bangladesh struggles with issues including depleting natural gas reserves and pollution from conventional fuel sources. With an emphasis on synthesis and structural characterization, a new family of materials, Ba1-xNaxCe0.7Zr0.1Y0.15Zn0.05O3-δ (x = 0.1, 0.3 & 0.5) perovskite oxides, are synthesized in this study. The samples were made using conventional solid-state sintering techniques, which involved 4 hours at a final sintering temperature of 1400°C. The synthesized materials were analyzed using characterization techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence (XRF). For x = 0.1, XRD shows cubic structure. SEM images convey highly dense materials for all compositions. To appraise thermal stability differential scanning calorimetry (DSC) was conducted. These results pave the way for more research into the possible uses of these synthetic perovskite oxide materials, particularly in Solid Oxide Fuel Cell technology, by providing a deeper knowledge of their structural characteristics and thermal behavior.

1.
Literature Review of the Solid Oxide Fuel Cell
.” Accessed : Sep. 23, 2023. [Online]. Available: https://ukdiss.com/litreview/literature-review-of-the-solid-oxide-fuel-cell.php?vref=1,%202018
2.
M. L.
Perry
and
T. F.
Fuller
, “
A Historical Perspective of Fuel Cell Technology in the 20th Century
,”
J Electrochem Soc
, vol.
149
, no.
7
, p.
S59
,
2002
, doi: .
3.
H.
Shi
,
C.
Su
,
R.
Ran
,
J.
Cao
, and
Z.
Shao
, “
Electrolyte materials for intermediate-temperature solid oxide fuel cells
,”
Progress in Natural Science: Materials International
, vol.
30
, no.
6
, pp.
764
774
, Dec.
2020
, doi: .
4.
L.
Yang
et al., “
Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr 0.1 Ce 0.7 Y 0.2– x Yb x O 3–δ
,”
Science
(
1979
), vol.
326
, no.
5949
, pp.
126
129
, Oct. 2009, doi: .
5.
E.
Fabbri
,
A.
Depifanio
,
E.
Dibartolomeo
,
S.
Licoccia
, and
E.
Traversa
, “
Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs
),”
Solid State Ion
, vol.
179
, no.
15–16
, pp.
558
564
, Jun.
2008
, doi: .
6.
K.
Katahira
,
Y.
Kohchi
,
T.
Shimura
, and
H.
Iwahara
, “
Protonic conduction in Zr-substituted BaCeO3
,”
Solid State Ion
, vol.
138
, no.
1–2
, pp.
91
98
, Dec.
2000
, doi: .
7.
Y.
Liu
,
L.
Yang
,
M.
Liu
,
Z.
Tang
, and
M.
Liu
, “
Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ by addition of nickel oxide
,”
J Power Sources
, vol.
196
, no.
23
, pp.
9980
9984
, Dec.
2011
, doi: .
8.
Z.
Tao
,
Z.
Zhu
,
H.
Wang
, and
W.
Liu
, “
A stable BaCeO3−based proton conductor for intermediate-temperature solid oxide fuel cells
,”
J Power Sources
, vol.
195
, no.
11
, pp.
3481
3484
, Jun.
2010
, doi: .
9.
N.
Radenahmad
,
A.
Afif
,
M. I.
Petra
,
S. M. H.
Rahman
,
S.
Eriksson
, and
A. K.
Azad
, “
High conductivity and high density proton conducting Ba1−xSrxCe0.5Zr0.35Y0.1Sm0.05O3−δ (x=0.5, 0.7, 0.9, 1.0) perovskites for IT-SOFC
,”
Int J Hydrogen Energy
, vol.
41
, no.
27
, pp.
11832
11841
, Jul.
2016
, doi: .
10.
H.
Matsumoto
,
Y.
Kawasaki
,
N.
Ito
,
M.
Enoki
, and
T.
Ishihara
, “
Relation Between Electrical Conductivity and Chemical Stability of BaCeO3 Based Proton Conductors with Different Trivalent Dopants
,”
Electrochemical and Solid-State Letters
, vol.
10
, no.
4
, p.
B77
,
2007
, doi: .
11.
A. K.
Azad
,
A.
Kruth
, and
J. T. S.
Irvine
, “
Influence of atmosphere on redox structure of BaCe 0.9 Y 0.1 O 2.95 − Insight from neutron diffraction study
,”
Int J Hydrogen Energy
, vol.
39
, no.
24
, pp.
12804
12811
, Aug.
2014
, doi: .
12.
Y.
Guo
,
R.
Ran
, and
Z.
Shao
, “
Optimizing the modification method of zinc-enhanced sintering of BaZr0.4Ce0.4Y0.2O3−δ−based electrolytes for application in an anode-supported protonic solid oxide fuel cell
,”
Int J Hydrogen Energy
, vol.
35
, no.
11
, pp.
5611
5620
, Jun.
2010
, doi: .
13.
P.
Sawant
,
S.
Varma
,
B. N.
Wani
, and
S. R.
Bharadwaj
, “
Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC
,”
Int J Hydrogen Energy
, vol.
37
, no.
4
, pp.
3848
3856
, Feb.
2012
, doi: .
14.
R.
Guo
,
Y.
Deng
,
Y.
Gao
, and
L.
Zhang
, “
Fabrication and properties of Ba(Zr1−xCex)0.9Y0.1O2.95/NaCl composite electrolyte materials
,”
J Alloys Compd
, vol.
509
, no.
36
, pp.
8894
8900
, Sep.
2011
, doi: .
15.
P.
Babilo
and
S. M.
Haile
, “
Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO
,”
Journal of the American Ceramic Society
, vol.
88
, no.
9
, pp.
2362
2368
, Sep.
2005
, doi: .
16.
A.
Afif
et al., “
Ceramic fuel cells using novel proton-conducting BaCe0.5Zr0.3Y0.1Yb0.05Zn0.05O3-δ electrolyte
,”
Journal of Solid State Electrochemistry
, vol.
26
, no.
1
, pp.
111
120
, Jan.
2022
, doi: .
17.
A. K.
Azad
et al., “
Improved mechanical strength, proton conductivity and power density in an ‘all-protonic’ ceramic fuel cell at intermediate temperature
,”
Sci Rep
, vol.
11
, no.
1
, p.
19382
, Sep.
2021
, doi: .
18.
D.
Parimi
,
V.
Sundararajan
,
O.
Sadak
,
S.
Gunasekaran
,
S. S.
Mohideen
, and
A.
Sundaramurthy
, “
Synthesis of Positively and Negatively Charged CeO 2 Nanoparticles: Investigation of the Role of Surface Charge on Growth and Development of Drosophila melanogaster
,”
ACS Omega
, vol.
4
, no.
1
, pp.
104
113
, Jan.
2019
, doi: .
19.
K.
Jayasankar
,
A.
Pandey
,
B. K.
Mishra
, and
S.
Das
, “
Evaluation of microstructural parameters of nanocrystalline Y2O3 by X-ray diffraction peak broadening analysis
,”
Mater Chem Phys
, vol.
171
, pp.
195
200
, Mar.
2016
, doi: .
20.
A.
Afif
et al., “
Enhancement of proton conductivity through Yb and Zn doping in BaCe0.5Zr0.35Y0.15O3-δ electrolyte for IT-SOFCs
,”
Processing and Application of Ceramics
, vol.
12
, no.
2
, pp.
180
188
,
2018
, doi: .
21.
C.
Zhang
,
H.
Zhao
,
N.
Xu
,
X.
Li
, and
N.
Chen
, “
Influence of ZnO addition on the properties of high temperature proton conductor Ba1.03Ce0.5Zr0.4Y0.1O3−δ synthesized via citrate–nitrate method
,”
Int J Hydrogen Energy
, vol.
34
, no.
6
, pp.
2739
2746
, Mar.
2009
, doi: .
22.
Y.
Li
et al., “
Stable and easily sintered BaCe0.5Zr0.3Y0.2O3−δ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells
,”
Electrochim Acta
, vol.
95
, pp.
95
101
, Apr.
2013
, doi: .
23.
A.
Afif
et al., “
Structural study and proton conductivity in BaCe0.7Zr0.25−xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25
),”
Int J Hydrogen Energy
, vol.
41
, no.
27
, pp.
11823
11831
, Jul.
2016
, doi: .
This content is only available via PDF.
You do not currently have access to this content.