This study explores the femtosecond Laser Induced Forward Transfer (fs-LIFT) method for fabrication of Li-ion battery electrodes, supplementing the limited existing research that primarily utilizes continuous or nanosecond lasers. The study systematically varies key parameters including laser power (ranging from 0.5 to 1.5W), laser scan rate (ranging from 50 to 500μm/s), transfer gap (ranging from 0 to 1000μm), donor film binder (PVDF) concentration (10% and 20%), donor film coating thickness (ranging from 200 to 500μm) and donor film dryness (wet, semi-dry, dry) to optimize the material transfer process. Our findings highlight the critical roles of average laser power, scan rate, transfer gap, and coating thickness in producing high-quality prints using fs-LIFT. Moreover, the results indicate that transitioning from a dry to semi-dry donor film improves material transfer and minimizes scattering of donor material. Despite various challenges, this study demonstrates fs-LIFT’s potential in advanced Li-ion battery electrode manufacturing, laying groundwork for further research in energy storage technology.

1.
Pu
,
X.
,
Hu
,
W.
, and
Wang
,
Z. L.
,
2018
, “
Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices
,”
Small
,
14
(
1
).
2.
Paula
,
K. T.
,
Santos
,
S. N. C.
,
Facure
,
M. H. M.
,
Araujo
,
F. L.
,
Andrade
,
M. M. B.
,
Correa
,
D. S.
, and
Mendonça
,
C. R.
,
2023
, “
Fabrication of Interdigitated Electrodes of Graphene Oxide/Silica by Femtosecond Laser-Induced Forward Transfer for Sensing Applications
,”
J Appl Phys
,
133
(
5
).
3.
Foster
,
C. W.
,
Down
,
M. P.
,
Zhang
,
Y.
,
Ji
,
X.
,
Rowley-Neale
,
S. J.
,
Smith
,
G. C.
,
Kelly
,
P. J.
, and
Banks
,
C. E.
,
2017
, “
3D Printed Graphene Based Energy Storage Devices
,”
Sci Rep
,
7
.
4.
Hu
,
J.
,
Jiang
,
Y.
,
Cui
,
S.
,
Duan
,
Y.
,
Liu
,
T.
,
Guo
,
H.
,
Lin
,
L.
,
Lin
,
Y.
,
Zheng
,
J.
,
Amine
,
K.
, and
Pan
,
F.
,
2016
, “
3D-Printed Cathodes of LiMn1−xFexPO4 Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithium-Ion Battery
,”
Adv Energy Mater
,
6
(
18
).
5.
Ding
,
J.
,
Shen
,
K.
,
Du
,
Z.
,
Li
,
B.
, and
Yang
,
S.
,
2017
, “
3D-Printed Hierarchical Porous Frameworks for Sodium Storage
,”
ACS Appl Mater Interfaces
,
9
(
48
), pp.
41871
41877
.
6.
Antoshin
,
A. A.
,
Churbanov
,
S. N.
,
Minaev
,
N. V
,
Zhang
,
D.
,
Zhang
,
Y.
,
Shpichka
,
A. I.
, and
Timashev
,
P. S.
,
2019
, “
LIFT-Bioprinting, Is It Worth It?
,”
Bioprinting
,
15
, p.
e00052
.
7.
Sano
,
T.
,
Yamada
,
H.
,
Nakayama
,
T.
, and
Miyamoto
,
I.
,
2002
, “
Experimental Investigation of Laser Induced Forward Transfer Process of Metal Thin Films
,”
Appl Surf Sci
,
186
(
1
), pp.
221
226
.
8.
Li
,
G.
,
Mo
,
X.
,
Law
,
W. C.
, and
Chan
,
K. C.
,
2019
, “
3D Printed Graphene/Nickel Electrodes for High Areal Capacitance Electrochemical Storage
,”
J Mater Chem A Mater
,
7
(
8
), pp.
4055
4062
.
9.
Kim
,
H.
,
Sutto
,
T. E.
,
Proell
,
J.
,
Kohler
,
R.
,
Pfleging
,
W.
, and
Piqué
,
A.
,
2014
, “
Laser-Printed/Structured Thick-Film Electrodes for Li-Ion Microbatteries
,”
Laser-Based Micro- and Nanoprocessing VIII, SPIE
, p.
89680L
.
10.
Wartena
,
R.
,
Curtright
,
A. E.
,
Arnold
,
C. B.
,
Piqué
,
A.
, and
Swider-Lyons
,
K. E.
,
2004
, “
Li-Ion Microbatteries Generated by a Laser Direct-Write Method
,”
J Power Sources
,
126
(
1–2
), pp.
193
202
.
11.
Das
,
A.
,
Ghosh
,
A.
,
Chattopadhyaya
,
S.
, and
Ding
,
C.-F.
,
2024
, “
A Review on Critical Challenges in Additive Manufacturing via Laser-Induced Forward Transfer
,”
Opt Laser Technol
,
168
, p.
109893
.
12.
Dinca
,
V.
,
Farsari
,
M.
,
Kafetzopoulos
,
D.
,
Popescu
,
A.
,
Dinescu
,
M.
, and
Fotakis
,
C.
,
2008
, “
Patterning Parameters for Biomolecules Microarrays Constructed with Nanosecond and Femtosecond UV Lasers
,”
Thin Solid Films
,
516
(
18
), pp.
6504
6511
.
13.
Khntor
,
Z.
, T6
th
,
Z.
, and Sziir6
nyi
,
T.
,
1992
,
Applied Physics A “ ’ Surfaces Laser Induced Forward Transfer: The Effect of Support-Film Interface and Film-to-Substrate Distance on Transfer
.
14.
Shaw-Stewart
,
J.
,
Chu
,
B.
,
Lippert
,
T.
,
Maniglio
,
Y.
,
Nagel
,
M.
,
Nüesch
,
F.
, and
Wokaun
,
A.
,
2011
, “
Improved Laser-Induced Forward Transfer of Organic Semiconductor Thin Films by Reducing the Environmental Pressure and Controlling the Substrate-Substrate Gap Width
,”
Appl Phys A Mater Sci Process
,
105
(
3
), pp.
713
722
.
15.
Delaporte
,
P.
, and
Alloncle
,
A.-P.
,
2016
, “
[INVITED] Laser-Induced Forward Transfer: A High Resolution Additive Manufacturing Technology
,”
Opt Laser Technol
,
78
, pp.
33
41
.
16.
Duocastella
,
M.
,
Fernández-Pradas
,
J. M.
,
Morenza
,
J. L.
, and
Serra
,
P.
,
2010
, “
Sessile Droplet Formation in the Laser-Induced Forward Transfer of Liquids: A Time-Resolved Imaging Study
,”
Thin Solid Films
,
518
(
18
), pp.
5321
5325
.
17.
Munoz-Garcia
,
C.
,
Canteli
,
D.
,
Lauzurica
,
S.
,
Morales
,
M.
,
Molpeceres
,
C.
,
Ros
,
E.
,
Ortega
,
P.
,
López-González
,
J. M.
, and
Voz
,
C.
,
2022
, “
Influence of Wavelength and Pulse Duration on the Selective Laser Ablation of WOx, VOx and MoOx Thin Films
.,”
Surfaces and Interfaces
,
28
.
18.
Han
,
M.
,
Meghwal
,
A.
,
Ng
,
S. H.
,
Smith
,
D.
,
Mu
,
H.
,
Katkus
,
T.
,
Zhu
,
D. M.
,
Mukhlis
,
R.
,
Vongsvivut
,
J.
,
Berndt
,
C. C.
,
Ang
,
A. S. M.
, and
Juodkazis
,
S.
,
2022
, “
Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer
,”
Materials
,
15
(
22
).
19.
Goodfriend
,
N. T.
,
Heng
,
S. Y.
,
Nerushev
,
O. A.
,
Gromov
,
A. V.
,
Bulgakov
,
A. V.
,
Okada
,
M.
,
Xu
,
W.
,
Kitaura
,
R.
,
Warner
,
J.
,
Shinohara
,
H.
, and
Campbell
,
E. E. B.
,
2018
, “
Blister-Based-Laser-Induced-Forward-Transfer: A Non-Contact, Dry Laser-Based Transfer Method for Nanomaterials
,”
Nanotechnology
,
29
(
38
).
20.
Rapp
,
L.
,
Cibert
,
C.
,
Nénon
,
S.
,
Alloncle
,
A. P.
,
Nagel
,
M.
,
Lippert
,
T.
,
Videlot-Ackermann
,
C.
,
Fages
,
F.
, and
Delaporte
,
P.
,
2011
, “
Improvement in Semiconductor Laser Printing Using a Sacrificial Protecting Layer for Organic Thin-Film Transistors Fabrication
,”
Applied Surface Science, Elsevier B.V.
, pp.
5245
5249
.
21.
Zenou
,
M.
,
Sa’ar
,
A.
, and
Kotler
,
Z.
,
2015
, “
Laser Jetting of Femto-Liter Metal Droplets for High Resolution 3D Printed Structures
,”
Sci Rep
,
5
.
This content is only available via PDF.
You do not currently have access to this content.