Technical progress has always influenced empirical educational research. In the 1960s, it was the first sound recording devices, and in the 1980s, it was the first static video cameras that made process data accessible for more systematic evaluations. Today, mobile cameras, teaching-learning laboratories, and eye-tracking glasses are available that allow more, newer, and more precise data to be collected. There are also possibilities for computer-assisted evaluations based on self-learning algorithms. In addition to the influences on the work of researchers mentioned, new technologies can also influence the processes of problem-solvers: Among other things, there are apps to promote self-regulation as well as spreadsheet and dynamic geometry software that enable new approaches and heurisms and thus help able to discover connections and make assumptions. In this paper, I take a look at recent developments in research on problem solving, discussing opportunities and risks of new technologies.

1.
L.
Baumanns
,
D.
Sommerhoff
and
B.
Rott
(in preparation).
Using artificial intelligence to code problem-posing data, a comparison with human ratings
.
2.
S.
Becker
(
2022
).
Der Einfluss von Stress auf diagnostische Urteilsprozesse bei Lehrkräften
(
Springer
,
Wiesbaden
). .
3.
BSNP
. (
2007
). Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 41 tahun 2007 tentang standar proses untuk satuan pendidikan dasar dan menengah [
The decree of the minister of National Education of Indonesia no. 41 year 2007 about the process standard for elementary and secondary school].
Jakarta
:
BSNP
.
4.
L.
Donner
,
J.
Dick
and
B.
Rott
(in preparation).
Identifying heuristics in problem-solving processes using eye-tracking technology
.
5.
B.
Glaser
and
A.
Strauss
(
1967
).
The discovery of grounded theory: Strategies for qualitative research
. (
Aldine
,
Chicago
, 1967). .
6.
R.
Gagne
(
1985
).
The Conditions of Learning
(4th Ed.) (
New York
:
Holt, Rinehart & Winston
).
8.
M. A.
Just
and
P. A.
Carpenter
(
1980
).
A theory of reading: From eye fixations to comprehension
.
Psychological Review
,
87
(
4
), pp.
329
354
. .
9.
KMK – Kultusministerkonferenz
(
2003
).
Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss
. (
Wolters Kluwer
,
München
). URL (last obtained on Nov, 11th, 2023): https://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2003/2003_12_04-Bildungsstandards-Mathe-Mittleren-SA.pdf.
10.
C. M.
Köster
(
2005
).
Interaktion von Affekt und Kognition – Einzelfallstudien mathematischer Problemlöseprozesse bei Kindern im Grundschulalter
(
Franzbecker
,
Hildesheim
).
11.
F. K.
Lester
(
1994
).
Musings about mathematical problem-solving research: The first 25 years in JRME
.
Journal for Research in Mathematics Education
,
25
(
6
), pp.
660
675
.
12.
Z. R.
Mevarech
and
B.
Kramarski
(
1997
).
IMPROVE: A Multidimensional Method for Teaching Mathematics in Heterogeneous Classrooms
.
American Educational Research Journal
,
92
(
4
), pp.
365
394
.
13.
MOE – The Ministry of Education of Singapore
(
2006
).
Secondary mathematics syllabuses
.
Singapore
:
Curriculum Planning and Development Division
.
14.
NCTM – National Council of Teachers of Mathematics
(n. d.).
Executive Summary. Principles and Standards for School Mathematics
. URL (last obtained on Dec., 1st,
2023
): https://www.nctm.org/uploadedFiles/Standards_and_Positions/PSSM_ExecutiveSummary.pdf.
15.
M.
Niss
and
T.
Højgaard
(
2019
).
Mathematical competencies revisited
.
Educational Studies in Mathematics
,
102
, pp.
9
28
. .
16.
F.
Pielsticker
and
M.
Reifenrath
(
2022
). Zusammenhänge von motivationalen und affektiven Aspekten und digitaler Herzfrequenzmessung bei mathematischer Wissensentwicklung beschreiben – Eine quantitative Studie. In
F.
Dilling
,
F.
Pielsticker
, and
I.
Witzke
(Eds.),
Neue Perspektiven auf mathematische Lehr-Lernprozesse mit digitalen Medien. MINTUS – Beiträge zur mathematisch-naturwissenschaftlichen Bildung
(
Springer Spektrum
,
Wiesbaden
). .
17.
G.
Pólya
(
1954
).
Mathematics and Plausible Reasoning
. Volume I.
Princeton
:
Princeton University Press
18.
G.
Pólya
(
1962
).
Mathematical Discovery – On Understanding, Learning, and Teaching Problem Solving
. Volume I.
New York
:
Ishi Press
19.
B.
Rott
(
2020
).
Teachers’ Behaviors, Epistemological Beliefs, and Their Interplay in Lessons on the Topic of Problem Solving
.
International Journal of Science and Mathematics Education
,
18
, pp.
903
924
. .
20.
B.
Rott
,
B.
Specht
and
C.
Knipping
(
2021
).
A descriptive phase model of problem-solving processes
.
ZDM Mathematics Education
,
53
, pp.
737
752
. .
21.
B.
Rott
,
L.
Donner
and
J.
Dick
(
2022
). Identifikation von Heurismen mithilfe von Eye-Tracking: eine explorative Studie. In
IDMI-Primar Goethe-Universität Frankfurt
(Eds.),
Beiträge zum Mathematikunterricht 2022
(
Münster
:
WTM
), pp.
227
230
.
22.
N.
Savage
(
2022
).
Breaking into the black box of artificial intelligence
.
Nature Outlook
. .
23.
M.
Schindler
and
A. J.
Lilienthal
(
2020
).
Students’ creative process in mathematics: insights from eye-tracking-stimulated recall interview on students’ work on multiple solution tasks
.
International Journal of Science and Mathematics Education
,
18
(
8
), pp.
1565
1586
.
24.
A. H.
Schoenfeld
(
1985
).
Mathematical Problem Solving
(
Orlando
:
Academic Press
).
25.
A. H.
Schoenfeld
(
1992a
).
On Paradigms and Methods: What Do You Do When the Ones You Know Don’t Do What You Want Them to? Issues in the Analysis of Data in the Form of Videotapes
.
The Journal of the Learning Sciences
2
, No. 2, pp.
179
214
.
26.
A. H.
Schoenfeld
(
1992b
). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In
D. A.
Grouws
(Ed.),
Handbook for Research on Mathematics Teaching and Learning
(
New York
:
MacMillan
), pp.
334
370
.
27.
A. H.
Schoenfeld
(
1994
). Reflections on doing mathematics. In
A. H.
Schoenfeld
(Ed.),
Mathematical Thinking and Problem Solving
(
Lawrence Erlbaum Associates
), pp.
53
72
.
28.
A. H.
Schoenfeld
(
2007
).
Problem solving in the United States, 1970-2008: research and theory, practice and politics
.
ZDM Mathematics Education
,
39
, pp.
537
551
. .
29.
R.
Sträßer
(
2019
). The German Speaking Didactic Tradition. In
W.
Blum
,
M.
Artigue
,
M.
Mariotti
,
R.
Sträßer
and
M.
Van den Heuvel-Panhuizen
(Eds),
European Traditions in Didactics of Mathematics. ICME-13 Monographs
.
Springer
,
Cham
. .
30.
G.
Törner
,
A. H.
Schoenfeld
and
K. M.
Reiss
(
2007
).
Problem solving around the world: summing up the state of the art
.
ZDM Mathematics Education
,
39
, p.
353
. .
31.
C.
Walter
and
B.
Rott
(in preparation).
An exploratory case study of AI-based emotion recognition in the context of students’ mathematical problem-solving processes
.
32.
L.
Xu
,
G.
Aranda
,
W.
Widjaja
, and
D.
Clarke
(
2018
).
Video-based Research in Education: Cross-disciplinary Perspectives
(
Routledge
,
London
). .
This content is only available via PDF.
You do not currently have access to this content.