This paper discusses the balancing of a nonlinear triple inverted pendulum, sometimes described as a gymnastic robot due to its simple simulation of the action of a human acrobat. This three-joint robot is mounted on a freely rotated high bar. The first joint is passive, being unpowered, while the second and third joints are powered. Managing the action of the first joint thus presents the most significant challenge in balancing the gymnastic robot in the vertical plane. Linear Quadratic Regular (LQR) optimal control theory was thus used throughout this work to balance the gymnastic robot. However, while the weighting matrices for Q and R are generally determined using trial and error, this is both time consuming and inaccurate. An optimization algorithm known as Gray Wolf Optimization (GWO) was thus used in this case to obtain the ideal control parameters, with superior results for all three links (first, second, and third) obtained in terms of overshot (26.12%, 1.62%, 31.22%), rise time (0.02506s, 0.0501s, 0.050s), and setting time (2.732s, 3.258s, 3.058s) as compared to those produced using the trial-and-error method.

1.
H.
Kamil
,
E.
Eldukhri
, and
M.
Packianather
, “
Balancing control of robot gymnast based on discrete-time linear quadratic regulator technique
,” in
2014 2nd International Conference on Artificial Intelligence, Modelling and Simulation
(
2014
) pp.
137
142
.
2.
E. E.
Eldukhri
and
D. T.
Pham
, “
Autonomous swing-up control of a three-link robot gymnast
,”
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
224
,
825
832
(
2010
).
3.
E. E.
Eldukhri
and
H. G.
Kamil
, “
Optimisation of swing-up control parameters for a robot gymnast using the bees algorithm
,”
Journal of Intelligent Manufacturing
26
,
1039
1047
(
2015
).
4.
D.-H.
Lee
,
J.-H.
Hsu
,
P.-W.
Lin
,
T.-H.
Chang
, and
P.-C.
Lin
, “
Dynamics analysis and experiment of a 3-link gymnastic robot
,” in
2017 3rd International Conference on Control, Automation and Robotics (ICCAR)
(
2017
) pp.
174
179
.
5.
J. M.
Lopes
,
L.
Moreira
,
C.
Pinheiro
,
D.
Sanz-Merodio
,
J.
Figueiredo
,
C. P.
Santos
, and
E.
Garcia
, “
Three-link inverted pendulum for human balance analysis: A preliminary study
,” in
2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG)
(
2019
) pp.
1
4
.
6.
J.
Kim
,
K.
Chang
,
B.
Schwarz
,
A.
Lee
,
S.
Gadsden
, and
M.
AlShabi
, “
Dynamic model and motion control of a robotic manipulator
,”
Journal of Robotics, Networking and Artificial Life
4
,
138
(
2017
).
7.
M. M.
Hasan
,
C.
Saha
,
M.
Rahman
,
M.
Rabiual
,
M. R. I.
Sarker
, and
S.
Aditya
, “
Balancing of an inverted pendulum using pd controller
,”
The Dhaka University Journal of Science
1
,
1
6
(
2012
).
8.
A.
Bayram
and
F.
Kara
, “
Design and control of spatial inverted pendulum with two degrees of freedom
,”
Journal of the Brazilian Society of Mechanical Sciences and Engineering
42
,
501
(
2020
).
9.
M.
Bi
, “
Control of robot arm motion using trapezoid fuzzy two-degree-of-freedom pid algorithm
,”
Symmetry
12
(
2020
), .
10.
A.
Bature
,
S.
Buyamin
,
M.
Ahmad
, and
M.
Muhammad
, “
A comparison of controllers for balancing two wheeled inverted pendulum robot
,”
International Journal of Mechanical & Mechatronics Engineering
14
,
62
68
(
2014
).
11.
H. F.
Murcia
and
A. E.
González
, “
Performance comparison between pid and lqr control on a 2-wheel inverted pendulum robot
,” in
2016 IEEE Colombian Conference on Robotics and Automation (CCRA)
(
2016
) pp.
1
6
.
12.
S.
Nawawi
, “
Control of two-wheels inverted pendulum mobile robot using full order sliding mode control
,” (
2006
).
13.
S. A. A.
Rizvi
and
Z.
Lin
, “
Output feedback q-learning control for the discrete-time linear quadratic regulator problem
,”
IEEE Transactions on Neural Networks and Learning Systems
30
,
1523
1536
(
2019
).
14.
I.
Siradjuddin
,
B.
Setiawan
,
A.
Fahmi
,
Z.
Amalia
, and
E.
Rohadi
, “
State space control using lqr method for a cart-inverted pendulum linearised model
,”
International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS
17
,
119
126
(
2017
).
15.
L.
Moysis
, “
Balancing a double inverted pendulum using optimal control and laguerre functions
,” (
2016
).
16.
M. A.
Sen
and
M.
Kalyoncu
, “
Optimal tuning of a lqr controller for an inverted pendulum using the bees algorithm
,”
Jounal of Automation and Control Engineering
4
,
384
387
(
2016
).
17.
H. O.
Erkol
, “
Linear quadratic regulator design for position control of an inverted pendulum by grey wolf optimizer
,”
International Journal of Advanced Computer Science and Applications
9
(
2018
), .
18.
H. H.
Bilgic
,
M. A.
Sen
, and
M.
Kalyoncu
, “
Tuning of LQR controller for an experimental inverted pendulum system based on the bees algorithm
,”
Journal of Vibroengineering
18
,
3684
3694
(
2016
).
19.
J. G.
Batista
,
D. A.
Souza
,
L. L. dos
Reis
,
L. V.
Filgueiras
,
K. M.
Ramos
,
A. B.
Junior
, and
W. B.
Correia
, “
Performance comparison between the pid and lqr controllers applied to a robotic manipulator joint
,” in
IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society
, Vol.
1
(
2019
) pp.
479
484
.
20.
S.
Yadav
,
S.
Sharma
, and
N.
Singh
, “
Optimal control of double inverted pendulum using lqr controller
,”
International Journal of Advanced Research in Computer Science and Software Engineering
2
,
3684
3694
(
2012
).
21.
R.
Banerjee
,
N.
Dey
,
U.
Mondal
, and
B.
Hazra
, “
Stabilization of double link inverted pendulum using lqr
,” in
2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)
(
2018
) pp.
1
6
.
22.
Z. B.
Hazem
,
M. J.
Fotuhi
, and
Z.
Bingül
, “
Development of a fuzzy-lqr and fuzzy-lqg stability control for a double link rotary inverted pendulum
,”
Journal of the Franklin Institute
357
,
10529
10556
(
2020
).
23.
K.
Mathiyalagan
and
G.
Sangeetha
, “
Finite-time stabilization of nonlinear time delay systems using lqr based sliding mode control
,”
Journal of the Franklin Institute
356
,
3948
3964
(
2019
).
24.
K.
Watanabe
,
Y. S.
Hussein
,
H. G.
Kamil
, and
A. A.
Al-Moadhen
, “
Robust hybrid controller design to stabilise an underactuated robot vehicle under various input
,”
Journal of Robotics
2022
,
5477391
(
2022
).
25.
A. A. A.
Moadhen
,
A. M.
Abdulhussein
, and
H. G.
Kamil
, “
Planning and acting framework under robot operating system
,”
IOP Conference Series: Materials Science and Engineering
433
,
012090
(
2018
).
26.
E.
Flaieh
,
H.
Kamil
,
S.
Bakhy
, and
M. A.
Jabbar
, “
Design and analysis of multi-finger robotic hand
,”
Journal of Engineering Science and Technology
,
988
1005
(
2021
).
27.
A.
Seyyedabbasi
and
F.
Kiani
, “
I-gwo and ex-gwo: improved algorithms of the grey wolf optimizer to solve global optimization problems
,”
Engineering with Computers
37
,
509
532
(
2021
).
28.
L. P.
Horwitz
,
S.
Zhang
, and
Y.
Zhou
, “
Grey wolf optimizer based on powell local optimization method for clustering analysis
,”
Discrete Dynamics in Nature and Society
2015
,
481360
(
2015
).
29.
P.
Saxena
and
A.
Kothari
, “
Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm
,”
International Journal of Antennas and Propagation
2016
,
1
11
(
2016
).
30.
N.
Shahzad
,
N.
Singh
, and
S. B.
Singh
, “
Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance
,”
Journal of Applied Mathematics
2017
,
2030489
(
2017
).
31.
S.
Gupta
and
K.
Deep
, “
Cauchy grey wolf optimiser for continuous optimisation problems
,”
Journal of Experimental & Theoretical Artificial Intelligence
30
,
1
25
(
2018
).
32.
M. A.
Sen
and
M.
Kalyoncu
, “
Grey wolf optimizer based tuning of a hybrid lqr-pid controller for foot trajectory control of a quadruped robot
,”
Gazi University Journal of Science
32
,
674
684
(
2019
).
33.
S.
Mirjalili
,
S. M.
Mirjalili
, and
A.
Lewis
, “
Grey wolf optimizer
,”
Advances in Engineering Software
69
,
46
61
(
2014
).
34.
H.
Rezaei
,
O.
Bozorg-Haddad
, and
X.
Chu
, “
Grey wolf optimization (gwo) algorithm
,” (
2018
) pp.
81
91
.
This content is only available via PDF.
You do not currently have access to this content.