The performance of photovoltaic systems is affected by many factors, including temperature, panel interconnection, and shading. Shading is one of the most common unpredicted phenomena, and, as such, is discussed in detail in this paper. Shading creates multiple issues for both photovoltaic modules and photovoltaic systems as a whole, including decreases in output power productivity, decreases in the overall life of photovoltaic panels, and the formation of hotspots on various surfaces, which can result in overheating and fires. This study investigated possible solutions to this, using various MATLAB/Simulink to explore the effects of shading on photovoltaic modules. Six shading patterns were applied to a Total Cross Tied photovoltaic array to examine performance parameters across two cases. This study combined the static reconfiguration technique or Total Cross Tied configuration with the diode technique to offer bypass and blocking diodes; the type of bypass diode was then changed from silicon to Schottky in case 2 in an attempt to mitigate the effect of shading on the photovoltaic systems and to thus enhance their performance characteristics. The main aim of this paper is thus an analysis of the resultant power versus voltage and current versus voltage characteristic curves to identify which case is superior in terms of eliminating the effects of partial shading and extracting greater output power, increasing both efficiency and fill factor as well as minimizing mismatches and power losses. Under all shading patterns, the simulation results show that the system with Schottky bypass diodes (case 2) is superior across all performance parameters to the system with silicon diodes (case 1). This occurs due to the fact that the forward voltage drop of Schottky diodes (about 0.4V) is smaller than that of silicon diodes (about 0.7V).

1.
S.
Zoller
,
E.
Koepf
,
D.
Nizamian
,
M.
Stephan
,
A.
Patané
,
P.
Haueter
,
M.
Romero
,
J.
González-Aguilar
,
D.
Lieftink
,
E.
de Wit
,
S.
Brendelberger
,
A.
Sizmann
, and
A.
Steinfeld
, “
A solar tower fuel plant for the thermochemical production of kerosene from h2o and co2
,”
Joule
6
,
1606
1616
(
2022
).
2.
P.
Scalco
,
J.
Copetti
,
M.
Macagnan
, and
J. Diehl
de Oliveira
, “
Linear fresnel solar collector concentrator - a review
,” (
2021
).
3.
I.
Arias
,
E.
Zarza
,
L.
Valenzuela
,
M.
Pérez-García
,
J. A. Romero
Ramos
, and
R.
Escobar
, “
Modeling and hourly time-scale characterization of the main energy parameters of parabolic-trough solar thermal power plants using a simplified quasi-dynamic model
,”
Energies
14
(
2021
), .
4.
M. E.
Zayed
,
J.
Zhao
,
A. H.
Elsheikh
,
W.
Li
,
S.
Sadek
, and
M. M.
Aboelmaaref
, “
A comprehensive review on dish/stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications
,”
Journal of Cleaner Production
283
,
124664
(
2021
).
5.
Y.
Lu
,
W.
Wang
,
H.
Cheng
,
H.
Qiu
,
W.
Sun
,
X.
Fang
,
J.
Zhu
, and
Y.
Zheng
, “
Bamboo-charcoal-loaded graphitic carbon nitride for photocatalytic hydrogen evolution
,”
International Journal of Hydrogen Energy
47
,
3733
3740
(
2022
).
6.
P. O.
Singh
,
Modeling of Photovoltaic Arrays under Shading Patterns with Reconfigurable Switching and Bypass Diodes Author Info
, M.S. thesis,
University of Toledo
(
2011
).
7.
M. Hernandez
Velasco
, “
Performance evaluation of different pv-array configurations under weak light conditions and partial shadings
,” (
2012
).
8.
M. A. A.
Mamun
,
M.
Hasanuzzaman
, and
J.
Selvaraj
, “
Experimental investigation of the effect of partial shading on photovoltaic performance
,”
IET Renewable Power Generation
Volume
11
, p.
912
921
(
2017
).
9.
P.
Manganiello
,
M.
Balato
, and
M.
Vitelli
, “
A survey on mismatching and aging of pv modules: The closed loop
,”
IEEE Transactions on Industrial Electronics
62
,
1
1
(
2015
).
10.
M. Zarei
Tazehkand
,
S.
Fathi
,
A.
Eskandari
, and
J.
Milimonfared
, “
Optimal reconfiguration of pv modules in an array without any constraint on structure by the use of genetic algorithm
,” (
2018
) pp.
145
150
.
11.
U.
Jahn
,
M.
Schweiger
, and
W.
Herrmann
, “
Final results of high precision indoor and outdoor performance characterization of various thin-film pv module technologies
,” (
2012
), .
12.
K.
Brecl
and
M.
Topič
, “
Self-shading losses of fixed free-standing pv arrays
,”
Renewable Energy
36
,
3211
3216
(
2011
).
13.
K. S.
Tey
,
S.
Mekhilef
, and
A.
Safari
, “
Simple and low cost incremental conductance maximum power point tracking using buck-boost converter
,”
Journal of Renewable and Sustainable Energy
5
(
2013
), .
14.
W. A. B. John A.
Duffie
,
Solar engineering of thermal processes
(
John Wiley & Sons, Ltd
,
2013
) https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118671603.part1.
15.
V.
Quaschning
,
Understanding Renewable Energy Systems
(
Earthscan
,
2005
).
16.
F.
Belhachat
and
C.
Larbes
, “
Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions
,”
Solar Energy
120
,
399
418
(
2015
).
17.
R.
Ramabadran
and
D.
Mathur
, “
A comprehensive review and analysis of solar photovoltaic array configurations under partial shaded conditions
,”
International Journal of Photo energy
12
(
2012
), .
18.
A.
Mäki
and
S.
Valkealahti
, “
Effect of photovoltaic generator components on the number of mpps under partial shading conditions
,”
IEEE Transactions on Energy Conversion
28
,
1008
1017
(
2013
).
19.
B.
Veerasamy
,
T.
Takeshita
,
A.
Jote
, and
T.
Mekonnen
, “
Mismatch loss analysis of pv array configurations under partial shading conditions
,” in
2018 7th International Conference on Renewable Energy Research and Applications (ICRERA)
(
2018
) pp.
1162
1183
.
20.
P.
Winston
D,
K.
Sundaramoorthy
,
P.
Kumar
B., and Devakirubakaran, “
Performance improvement of solar pv array topologies during various partial shading conditions
,”
Solar Energy
196
,
228
242
(
2020
).
21.
T.
Ramesh
,
K.
Rajani
, and
A. K.
Panda
, “
A novel triple-tied-cross-linked pv array configuration with reduced number of cross-ties to extract maximum power under partial shading conditions
,”
CSEE Journal of Power and Energy Systems
7
,
567
581
(
2021
).
22.
A.
Srinivasan
,
S.
Devakirubakaran
, and
M.
Sundaram
, “
Mitigation of mismatch losses in solar pv system – two-step reconfiguration approach
,”
Solar Energy
206
,
640
654
(
2020
).
23.
P.
Manoharan
,
U.
Subramaniam
,
S. B.
Thanikanti
,
R. Madurai
Elavarasan
, and
L.
Mihet-Popa
, “
Evaluation of mathematical model to characterize the performance of conventional and hybrid pv array topologies under static and dynamic shading patterns
,”
Energies
13
,
3216
(
2020
).
24.
P. R.
Satpathy
and
R.
Sharma
, “
Parametric indicators for partial shading and fault prediction in photovoltaic arrays with various interconnection topologies
,”
Energy Conversion and Management
219
,
113018
(
2020
).
25.
P.
Guerriero
,
P.
Tricoli
, and
S.
Daliento
, “
A bypass circuit for avoiding the hot spot in pv modules
,”
Solar Energy
181
,
430
438
(
2019
).
26.
T.
Hamada
,
K.
Nakamoto
,
I.
Nanno
,
N.
Ishikura
,
S.
Oke
, and
M.
Fujii
, “
Fault characteristics of schottky barrier diode used as bypass diode in photovoltaic module against repetitive surges
,” (
2020
) pp.
0067
0071
.
27.
R.
Nazeri
,
M. F. N.
Tajuddin
,
S. B.
Thanikanti
,
A.
Azmi
,
M.
Malvoni
, and
N. Manoj
Kumar
, “
Firefly algorithm-based photovoltaic array reconfiguration for maximum power extraction during mismatch conditions
,”
Sustainability
13
,
3206
(
2021
).
28.
M.
Alanazi
,
A.
Fathy
,
D.
Yousri
, and
H.
Rezk
, “
Optimal reconfiguration of shaded pv based system using african vultures optimization approach
,”
AEJ - Alexandria Engineering Journal
61
,
12159
12185
(
2022
).
29.
P.
Murugesan
,
P.
Winston
D,
P.
Kumar
B,
C.
Kumar
,
S. B.
Thanikanti
, and
H. Haes
Alhelou
, “
A new ken-ken puzzle pattern based reconfiguration technique for maximum power extraction in partial shaded solar pv array
,”
IEEE Access
PP
,
1
1
(
2021
).
30.
Y.
Zhao
,
L.
Yang
,
B.
Lehman
,
J.-F.
Palma
,
J.
Mosesian
, and
R.
Lyons
, “
Decision tree-based fault detection and classification in solar photovoltaic arrays
,”
Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE
(
2012
), .
31.
A.
Mäki
and
S.
Valkealahti
, “
Power losses in long string and parallel-connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions
,”
IEEE Transactions on Energy Conversion - IEEE TRANS ENERGY CONVERS
27
,
173
183
(
2012
).
32.
(
2018
), Photovoltaic Energy Factsheet | Center for Sustainable Systems.
33.
C.
Honsberg
and
S.
Bowden
, (
2019
),
Fill Factor | PVEducation
.
34.
S. R.
Pendem
and
S.
Mikkili
, “
Modelling and performance assessment of pv array topologies under partial shading conditions to mitigate the mismatching power losses
,”
Solar Energy
160
,
303
321
(
2018
).
35.
K.
Kato
and
H.
Koizumi
, “
A study on effect of blocking and bypass diodes on partial shaded pv string with compensating circuit using voltage equalizer
,” (
2015
) pp.
241
244
.
36.
B.
Pannebakker
,
A.
de Waal
, and
W.
van Sark
, “
Photovoltaics in the shade: one bypass diode per solar cell revisited: Photovoltaics in the shade
,”
Progress in Photovoltaics: Research and Applications
25
(
2017
), .
37.
P.
Bonthagorla
and
S.
Mikkili
, “
Performance analysis of pv array configurations (sp, bl, hc and tt) to enhance maximum power under non-uniform shading conditions
,”
Engineering Reports
2
(
2020
), .
38.
S.
Daliento
,
F.
Di Napoli
,
P.
Guerriero
, and
V.
D’Alessandro
, “
A modified bypass circuit for improved hot spot reliability of solar panels subject to partial shading
,”
Solar Energy
134
,
211
218
(
2016
).
39.
M.
Dhimish
,
V.
Holmes
,
B.
Mehrdadi
,
M.
Dales
,
B.
Chong
, and
L.
Zhang
, “
Seven indicators variations for multiple pv array configurations under partial shading and faulty pv conditions
,”
Renewable Energy
113
,
438
460
(
2017
).
40.
J. C.
Teo
,
R.
Tan
,
V.
Mok
,
V.
Ramachandaramurthy
, and
C. K.
Tan
, “
Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions
,”
Energy
191
,
116491
(
2019
).
41.
V.
D’Alessandro
,
P.
Guerriero
, and
S.
Daliento
, “
A simple bipolar transistor-based bypass approach for photovoltaic modules
,”
IEEE Journal of Photovoltaics
4
,
405
413
(
2014
).
42.
K. A. K.
Niazi
,
Y.
Yang
, and
D.
Sera
, “
Review of mismatch mitigation techniques for photovoltaic modules
,”
Renewable Power Generation, IET
PP
,
1
18
(
2019
).
43.
R.-M.
Ma
,
L.
Dai
, and
G.-G.
Qin
, “
High-performance nano-schottky diodes and nano-mesfets made on single cds nanobelts
,”
Nano letters
7
,
868
73
(
2007
).
44.
J.
Foran
, (
2021
),
Solar-panel fire risks and the opportunities to improve safety.
45.
(
2019
),
Schottky Diode Characteristics and Applications.
46.
T.
Hamada
,
T.
Kashiwaya
,
S.
Yoneda
, and
K.
Nakamoto
, “
Durability performance testing of sic diodes for use as bypass diodes in photovoltaic modules
,” (
2020
) pp.
2380
2383
.
47.
N.
Shiradkar
,
V.
Gade
, and
K.
Sundaram
, “
Predicting service life of bypass diodes in photovoltaic modules
,” (
2015
) pp.
1
5
.
48.
K. M.
Coetzer
,
A. J.
Rix
, and
P. G.
Wiid
, “
The measurement and spice modelling of schottky barrier diodes appropriate for use as bypass diodes within photovoltaic modules
,”
Energies
15
(
2022
), .
49.
P.
Kumar
B,
S.
Cherukuri
,
K.
Raj
,
K.
Natarajan
,
M.
Rathinam
,
S. B.
Thanikanti
, and
H. Haes
Alhelou
, “
Performance enhancement of partial shaded photovoltaic system with the novel screw pattern array configuration scheme
,”
IEEE Access
PP
,
1
1
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.