As a result of the surge in malware activity that threatens the security and safety of computer systems as well as stakeholders, security has grown significantly in importance with the quick development of technology. Preserving the data from fraudulent attempts is one of the most important things to do in order to ensure the security of stakeholders, especially end users. Malware is a collection of invasive software, scripts, malicious programming code, or active material that is meant to damage computer systems, software, mobile apps, and online apps. A study found that unsuspecting users are unable to tell the difference between safe and harmful apps. As a result, in order to safeguard the stakeholders, computer systems and mobile applications should be built to recognize malicious activity. Numerous techniques that make use of cutting-edge ideas like artificial intelligence, machine learning, and deep learning are available to detect malware activity. In this work, we focus on methods for identifying and stopping malware activity that are based on artificial intelligence (AI). We provide an in-depth analysis of the weaknesses of the most recent malware detection methods as well as recommendations for enhancing their effectiveness. According to our analysis, there will be major benefits to developing malware detection apps using futuristic techniques. Understanding this synthesis will aid future research on AI-based malware detection and prevention.

1.
Giovanni
Apruzzese
,
Michele
Colajanni
,
Luca
Ferretti
,
Alessandro
Guido
, and
Mirco
Marchetti
.
2018
.
On the effectiveness of machine and deep learning for cyber security
. In
10th International Conference on Cyber Conflict (Cy-Con’18
).
371
390
.
2.
Giovanni
Apruzzese
,
Pavel
Laskov
,
Edgardo Montes
de Oca
,
Wissam
Mallouli
,
Luis Búrdalo
Rapa
,
Athanasios Vasileios
Grammatopoulos
, and
Fabio
Di Franco
. 2022.
The role of machine learning in cybersecurity
.
Digital Threats: Research and Practice
4
,
1
(
2022
),
1
38
.
3.
L.
Caviglione
,
M.
Choraś
,
I.
Corona
,
A.
Janicki
,
W.
Mazurczyk
,
M.
Pawlicki
, and
K.
Wasielewska
. 2021.
Tight arms race: Overview of current malware threats and trends in their detection
.
IEEE Access
9
(
2021
),
5371
5396
.
4.
Daniel
Gibert
,
Carles
Mateu
, and
Jordi
Planes
. 2020.
The rise of machine learning for detection and classification of malware: Research developments, trends and challenges
.
J. Netw. Comput. Applic.
153
(
2020
),
102526
.
5.
Ömer Aslan
Aslan
and
Refik
Samet
. 2020.
A comprehensive review on malware detection approaches
.
IEEE Access
8
(
2020
),
6249
6271
.
6.
Daniele
Ucci
,
Leonardo
Aniello
, and
Roberto
Baldoni
. 2019.
Survey of machine learning techniques for malware analysis
.
Comput. Secur.
81
(
2019
),
123
.
7.
Sana
Aurangzeb
,
Rao Naveed
Bin Rais
,
Muhammad
Aleem
,
Muhammad Arshad
Islam
, and
Muhammad Azhar
Iqbal
. 2021.
On the classification of Microsoft-Windows ransomware using hardware profile
.
PeerJ. Comput. Sci.
7
(
2021
),
e361
.
8.
Manabu
Hirano
,
Ryo
Hodota
, and
Ryotaro
Kobayashi
. 2022.
RanSAP: An open dataset of ransomware storage access patterns for training machine learning models
.
Forens. Sci. Internat.: Digit.
40
(
2022
).
9.
Anil Singh
Parihar
,
Shashank
Kumar
, and
Savya
Khosla
. 2022.
S-DCNN: Stacked deep convolutional neural networks for malware classification
.
Multim. Tools Applic.
81
,
21
(
2022
),
30997
31015
.
10.
Domhnall
Carlin
,
Philip
O’Kane
, and
Sakir
Sezer
. 2019.
A cost analysis of machine learning using dynamic runtime opcodes for malware detection
.
Comput. Secur.
85
(
2019
),
138
155
.
11.
Firoz
Khan
,
Cornelius
Ncube
,
Lakshmana Kumar
Ramsay
,
Seifedine
Kadry
, and
Yunyoung
Nam
. 2020.
A digital DNA sequencing engine for ransomware detection using machine learning
.
IEEE Access
8
(
2020
),
119710
119719
.
12.
Setia Juli Irzal
Ismail
,
Hafiz Pradana
Gemilang
,
Budi
Rahardjo
and Hendrawan. 2022.
Self-supervised learning implementation for malware detection
.
2022 8th International Conference on Wireless and Telematics (ICWT
),
Yogyakarta, Indonesia
,
2022
,
1
6
.
13.
Hamid
Darabian
,
Sajad
Homayounoot
,
Ali
Dehghantanha
,
Sattar
Hashemi
,
Hadis
Karimipour
,
Reza M.
Parizi
, and
Kim-Kwang Raymond
Choo
. 2020.
Detecting cryptomining malware: A deep learning approach for static and dynamic analysis
.
J. Grid Comput.: Grids Cloud Federat.
18
,
2
(
2020
),
293
303
.
14.
Jiayin
Feng
,
Limin
Shen
,
Zhen
Chen
,
Yuying
Wang
, and
Hui
Li
. 2020.
A two-layer deep learning method for Android malware detection using network traffic
.
IEEE Access
8
(
2020
),
125786
125796
.
15.
Daniel
Gibert
,
Carles
Mateu
,
Jordi
Planes
, and
Joao
Marques-Silva
. 2021.
Auditing static machine learning anti-malware tools against metamorphic attacks
.
Comput. Secur.
102
(
2021
).
16.
Sanjith
,
S.
,
P. R. J.
Thangaiah
,
J. M. A.
Navamani
, and
A.
Venkataramana
. "
Integration of Blockchain Technology for Security and Privacy Enhancement in Wireless Body Area Network Systems
."
Indian Journal of Science and Technology
16
, no.
41
(
2023
):
3583
3590
.
17.
Sanjith
,
S.
,
M.
Padmadas
, and
N.
Krishnan
. "
EAACK—based intrusion detection and prevention for MANETs using ECC Approach
."
Int. J. Emerg. Trends Technol. Comput. Sci. (IJETTCS)
2
, no.
4
(
2013
).
18.
Minho
Kim
,
Haehyun
Cho
, and
Jeong Hyun
Yi
. 2022.
Large-scale analysis on anti-analysis techniques in real-world malware
.
IEEE Access
10
(
2022
),
75802
75815
.
19.
Nicola
Galloro
,
Mario
Polino
,
Michele
Carminati
,
Andrea
Continella
, and
Stefano
Zanero
. 2022.
A systematical and longitudinal study of evasive behaviors in windows malware
.
Comp. Secur.
113
(
2022
).
20.
Firoz
Khan
,
Cornelius
Ncube
,
Lakshmana Kumar
Ramsay
,
Seifedine
Kadry
, and
Yunyoung
Nam
. 2020.
A digital DNA sequencing engine for ransomware detection using machine learning
.
IEEE Access
8
(
2020
),
119710
119719
.
21.
Mario
Polino
,
Andrea
Continella
,
Sebastiano
Mariani
,
Stefano
D’Alessio
,
Lorenzo
Fontana
,
Fabio
Gritti
, and
Stefano
Zanero
. 2017.
Measuring and defeating anti-instrumentation-equipped malware
.
Lecture Notes in Computer Science 10327 LNCS
(
2017
),
73
96
.
22.
Mario
Polino
,
Andrea
Continella
,
Sebastiano
Mariani
,
Stefano
D’Alessio
,
Lorenzo
Fontana
,
Fabio
Gritti
, and
Stefano
Zanero
. 2017.
Measuring and defeating anti-instrumentation-equipped malware
.
Lecture Notes in Computer Science 10327 LNCS
(
2017
),
73
96
.
23.
Matthew
Nunes
,
Pete
Burnap
,
Philipp
Reinecke
, and
Kaelon
Lloyd
. 2022.
Bane or Boon: Measuring the effect of evasive malware on system call classifiers
.
J. Inf. Secur. Applic.
67
(
2022
).
24.
Guoqing
Xiao
,
Jingning
Li
,
Yuedan
Chen
, and
Kenli
Li
. 2020.
MalFCS: An effective malware classification framework with automated feature extraction based on deep convolutional neural networks
.
J. Parallel Distrib. Comput.
141
(
2020
),
49
58
.
25.
Aslan
Ömer
and
Yilmaz Abdullah
Asim
. 2021.
A new malware classification framework based on deep learning algorithms
.
IEEE Access
9
(
2021
),
87936
87951
.
26.
P.
García-Teodoro
,
J. A.
Gómez-Hernández
, and
A.
Abellán-Galera
. 2022.
Multilabeling of complex, multi-behavioral malware samples
.
Comput. Secur.
121
(
2022
).
27.
Ricardo Misael Ayala
Molina
,
Sadegh
Torabi
,
Khaled
Sarieddine
,
Elias
Bou-Harb
,
Nizar
Bouguila
, and
Chadi
Assi
. 2022.
On ransomware family attribution using pre-attack paranoia activities
.
IEEE Trans. Netw. Serv. Manag.
19
,
1
(
2022
),
19
36
.
28.
Juhyun
Park
,
Yun-Hwan
Jang
,
Soohwa
Hong
, and
Yongsu
Park
. 2019.
Automatic detection and bypassing of anti-debugging techniques for Microsoft Windows environments
.
Adv. Electric. Comput. Eng.
19
,
2
(
2019
),
23
28
.
29.
Amit
Sharma
,
Brij B.
Gupta
,
Awadhesh Kumar
Singh
, and
V. K.
Saraswat
. 2022.
Orchestration of APT malware evasive manoeuvers employed for eluding anti-virus and sandbox defense
.
Comput. Secur.
115
(
2022
).
30.
X.
Chen
,
J.
Andersen
,
Z. Morley
Mao
,
M.
Bailey
, and
J.
Nazario
.
2008
.
Towards an understanding of anti-virtualization and anti-debugging behavior in modern malware
.
International Conference on Dependable Systems and Networks
.
177
186
.
31.
Nektaria
Kaloudi
and
Jingyue
Li
. 2020.
The AI-based cyber threat landscape a survey
.
ACM Comput. Surv.
53
,
1
(
2020
),
1
34
.
32.
Tais Fernanda
Blauth
,
Oskar Josef
Gstrein
, and
Andrej
Zwitter
. 2022.
Artificial intelligence crime: An overview of malicious use and abuse of AI
.
IEEE Access
10
(
2022
).
33.
Nektaria
Kaloudi
and
Jingyue
Li
. 2020.
The AI-based cyber threat landscape a survey
.
ACM Comput. Surv.
53
,
1
(
2020
),
1
34
.
34.
R.
Vinayakumar
,
M.
Alazab
,
K. P.
Soman
,
P.
Poornachandran
, and
S.
Venkatraman
. 2019.
Robust intelligent malware detection using deep learning
.
IEEE Access
7
(
2019
),
46717
46738
.
35.
Jan
von der Assen
,
Alberto Huertas
Celdrán
,
Adrian
Zermin
,
Raffael
Mogicato
,
Gérôme
Bovet
, and
Burkhard
Stiller
.
2023
.
SecBox: A lightweight container-based sandbox for dynamic malware analysis
. In
IEEE/IFIP Network Operations and Management Symposium
.
1
3
.
36.
Yanfang
Ye
,
Tao
Li
,
Donald
Adjeroh
, and
S. Sitharama
Iyengar
. 2017.
A survey on malware detection using data mining techniques
.
ACM Comput. Surv.
50
,
3
(
2017
),
1
40
.
37.
Suyeon
Yoo
,
Sungjin
Kim
,
Seungjae
Kim
, and
Brent Byunghoon
Kang
.
2021
.
AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification
.
Inf. Sci.
546
,
420
435
.
38.
Daniele
Ucci
,
Leonardo
Aniello
, and
Roberto
Baldoni
. 2019.
Survey of machine learning techniques for malware analysis
.
Comput. Secur.
81
(
2019
),
123
.
39.
Lorenzo
Maffia
,
Dario
Nisi
,
Platon
Kotzias
,
Giovanni
Lagorio
,
Simone
Aonzo
, and
Davide
Balzarotti
.
2021
.
Longitudinal Study of the Prevalence of Malware Evasive Techniques
. Retrieved from https://arxiv.org/abs/2112.11289
40.
Manabu
Hirano
,
Ryo
Hodota
, and
Ryotaro
Kobayashi
. 2022.
RanSAP: An open dataset of ransomware storage access patterns for training machine learning models
.
Forens. Sci. Inter. Digit. Investig.
40
(
2022
).
41.
Sungjoong
Kim
,
Seongkyu
Yeom
,
Haengrok
Oh
,
Dongil
Shin
, and
Dongkyoo
Shin
. 2020.
Automatic malicious code classification system through static analysis using machine learning.
1
(
2020
),
35
.
42.
Jagsir
Singh
and
Jaswinder
Singh
. 2020.
Detection of malicious software by analyzing the behavioral artifacts using machine learning algorithms
.
Inf. Softw. Technol.
121
(
2020
).
43.
Cody
Miller
,
Dae
Glendowne
,
Henry
Cook
,
DeMarcus
Thomas
,
Chris
Lanclos
, and
Patrick
Pape
.
Insights gained from constructing a largescale dynamic analysis platform
.
Digit.
22
, Supple.
2017
,
48
56
.
44.
Daniele Cono
D’Elia
,
Emilio
Coppa
,
Simone
Nicchi
,
Federico
Palmaro
, and
Lorenzo
Cavallaro
.
2019
.
SoK using dynamic binary instrumentation for security (and how you may get caught red handed
). In
ACM Asia Conference on Computer and Communications Security
.
15
27
.
45.
Limin
Yang
,
Arridhana
Ciptadi
,
Ihar
Laziuk
,
Ali
Ahmadzadeh
, and
Gang
Wang
.
2021
.
BODMAS: An open dataset for learning based temporal analysis of PE malware
. In
IEEE Security and Privacy Workshops (SPW’21
).
78
84
.
46.
Maanak
Gupta
,
Charankumar
Akiri
,
Kshitiz
Aryal
,
Eli
Parker
, and
Lopamudra
Praharaj
.
From ChatGPT to ThreatGPT: Impact of generative AI in cybersecurity and privacy
.
IEEE Access
11
(
2023
),
80218
80245
.
47.
Ke
Kong
,
Zhichao
Zhang
,
Zi-Yuan
Yang
, and
Zhaoxin
Zhang
. 2022.
FCSCNN: Feature centralized Siamese CNN-based Android malware identification
.
Comput. Secur.
112
(
2022
).
48.
Abuse.ch.
2023
. Malware Bazaar. Retrieved from https://bazaar.abuse.ch
This content is only available via PDF.
You do not currently have access to this content.