Malware is one of the major threats that can attack the security of many platforms, including Android and Windows. Due to the widespread use of these two platforms, applications and malware targeting both operating systems have increased dramatically. Malware is coded so cleverly that identifying it has become extremely complex, yet traditional signature-based methods for detecting malware have become practically useless. In order to find a suitable solution against malware threats, a machine learning-based malware detection system was proposed on Android and Windows platforms using two data sets, the first for Android and the second for Windows. The datasets are pre-processed, and then feature selection using the feature ranking algorithm is applied to produce different feature-specific datasets. The selected features are then fed into four machine learning classifiers to be trained (RF, DT, SVM, and KNN). The trained models are then evaluated using several performance metrics (precision, precision, recall, and F1 score). The results indicate that the RF algorithm achieved the highest results on both systems, as it was 98.5% on the Android data set and 99.8% on the Windows data set.

1.
Liu
,
K.
,
S.
Xu
,
G.
Xu
,
M.
Zhang
,
D.
Sun
, and
H.
Liu
.
A Review of Android Malware Detection Approaches Based on Machine Learning
.
IEEE Access
8
:
124579
124607
. (
2020
).
2.
Raff
,
E.
, and
C.
Nicholas
.
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
. (
2020
).
3.
Li
,
J.
,
L.
Sun
,
Q.
Yan
,
Z.
Li
,
W.
Srisa-An
, and
H.
Ye
.
Significant Permission Identification for Machine-Learning-Based Android Malware Detection
.
IEEE Trans. Ind. Informatics
14
(
7
):
3216
3225
. (
2018
).
4.
Gantz
,
J.F.
,
R.
Lee
,
A.
Florean
, et al.
The Link between Pirated Software and Cybersecurity Breaches
.
Natl. Univ. Singapore IDC(March)
:
35
. (
2014
).
5.
Amro
,
B.
Malware detection techniques for mobile devices
. arXiv Prepr. arXiv1801.02837:(
2018
).
6.
Li
,
B.
,
K.
Roundy
,
C.
Gates
, and
Y.
Vorobeychik
.
Large-scale identification of malicious singleton files
.
CODASPY 2017 - Proc. 7th ACM Conf. Data Appl. Secur. Priv.
:
227
238
. (
2017
).
7.
Damodaran
,
A.
,
F.
Di Troia
,
C.A.
Visaggio
,
T.H.
Austin
, and
M.
Stamp
.
A comparison of static, dynamic, and hybrid analysis for malware detection
.
J. Comput. Virol. Hacking Tech.
13
:
1
12
. (
2017
).
8.
Al-Janabi
,
M.
, and
A.M.
Altamimi
.
A comparative analysis of machine learning techniques for classification and detection of malware
.
2020 21st International Arab Conference on Information Technology (ACIT), IEEE
(
2020
),
1
9
.
9.
Mohammed Kareem
Al-Thiabi
,
Ali J. Dawood
Al-Alwani
;
Predicting corona virus mutations using deep learning
.
AIP Conf. Proc.
14 February
2024
;
3009
(
1
):
020017
.
10.
Idika
,
N.
, and
A.P.
Mathur
.
A survey of malware detection techniques
.
Purdue Univ.
48
(
2
):
32
46
. (
2007
).
11.
Sihwail
,
R.
,
K.
Omar
, and
K.A.Z.
Ariffin
.
A survey on malware analysis techniques: Static, dynamic, hybrid and memory analysis
.
Int. J. Adv. Sci. Eng. Inf. Technol.
8
(
4–2
):
1662
1671
. (
2018
).
12.
Silberschatz
,
A.
,
P.B.
Galvin
, and
G.
Gagne
.
Operating System Concepts
,
2001
.
Google Sch. Google Sch. Digit. Libr. Digit. Libr.
:
13.
Wang
,
S.
,
Z.
Chen
,
Q.
Yan
,
B.
Yang
,
L.
Peng
, and
Z.
Jia
.
A mobile malware detection method using behavior features in network traffic
.
J. Netw. Comput. Appl.
133
:
15
25
. (
2019
).
14.
Qamar
,
A.
,
A.
Karim
, and
V.
Chang
.
Mobile malware attacks: Review, taxonomy & future directions
.
Futur. Gener. Comput. Syst.
97
:
887
909
. (
2019
).
15.
Yamada
,
M.
,
M.
Morinaga
,
Y.
Unno
,
S.
Torii
, and
M.
Takenaka
.
RAT-based malicious activities detection on enterprise internal networks
.
2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), IEEE
(
2015
),
321
325
.
16.
Kouliaridis
,
V.
,
K.
Barmpatsalou
,
G.
Kambourakis
, and
S.
Chen
.
A survey on mobile malware detection techniques
.
IEICE Trans. Inf. Syst
.
E103D
(
2
):
204
211
. (
2020
).
17.
Devi
,
T.A.M.
,
K.S.
Saji
, and
R.S.
Kumar
.
MALWARE ANALYSIS IN WINDOWS SYSTEM
.
18.
Pirscoveanu
,
R.S.
,
S.S.
Hansen
,
T.M.T.
Larsen
,
M.
Stevanovic
, and
J.M.
Pedersen
.
Analysis of Malware Behavior: Type Classification using Machine Learning
. (
2015
).
19.
Ahmed
,
S.H.
, and
A.N.
Rashid
.
Hybrid K-Mean PSO Clustering Algorithm for Energy-Efficient of Object Tracking in WSNs. 2023 3rd International Conference on Electrical
,
Computer, Communications and Mechatronics Engineering (ICECCME), IEEE
(
2023
),
1
6
.
20.
Kakavand
,
M.
,
M.
Dabbagh
, and
A.
Dehghantanha
.
Application of machine learning algorithms for android malware detection
.
ACM Int. Conf. Proceeding Ser.(November)
:(
2018
).
21.
Mahindru
,
A.
Dynamic Permissions based Android Malware Detection using Machine Learning Techniques
.
202
210
. (
2017
).
22.
Jung
,
K.
symmetry Permissions-Based Detection of Android Malware Using Machine Learning
. (
2022
).
23.
Peiravian
,
N.
, and
X.
Zhu
.
Machine Learning for Android Malware Detection Using Permission and API Calls.
(
2013
).
24.
Gupta
,
R.
,
B.S.
Solanki
,
M.
Kumar
, and
R.
Murugan
.
Detecting Malware on the Android Phones Based on Golden Jackal Optimized Support Vector Machine
.
Int. J. Intell. Syst. Appl. Eng.
11
(
8s
):
01
07
. (
2023
).
25.
Dhalaria
,
M.
, and
E.
Gandotra
.
Android malware detection using chi-square feature selection and ensemble learning method
.
PDGC 2020 - 2020 6th Int. Conf. Parallel, Distrib. Grid Comput.
:
36
41
. (
2020
).
26.
Wang
,
W.
,
Y.
Li
,
X.
Wang
,
J.
Liu
, and
X.
Zhang
.
Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers
.
Futur. Gener. Comput. Syst.
78
:
987
994
. (
2018
).
27.
Zhu
,
H.
,
Y.
Li
,
R.
Li
, et al.
SEDMDroid : An enhanced stacking ensemble framework for Android malware detection
.
4697
(c):
1
12
. (
2020
).
28.
Billah
,
E.
,
M.
Debbabi
,
A.
Derhab
, and
D. Mouheb.
MalDozer
:
Automatic framework for android malware detection using deep learning
.
Digit. Investig.
24
:
S48
S59
. (
2018
).
29.
Imtiaz
,
S.I.
,
S. ur
Rehman
,
A.R.
Javed
,
Z.
Jalil
,
X.
Liu
, and
W.S.
Alnumay
.
DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network
.
Futur. Gener. Comput. Syst.
115
:
844
856
. (
2021
).
30.
Wang
,
W.
,
M.
Zhao
, and
J.
Wang
.
Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network
.
J. Ambient Intell. Humaniz. Comput.
10
(
8
):
3035
3043
. (
2019
).
31.
Zhou
,
Q.
,
F.
Feng
,
Z.
Shen
,
R.
Zhou
,
M.Y.
Hsieh
, and
K.C.
Li
.
A novel approach for mobile malware classification and detection in Android systems
.
Multimed. Tools Appl.
78
(
3
):
3529
3552
. (
2019
).
32.
Hussain
,
A.
,
M.
Asif
,
M.
Bin Ahmad
,
T.
Mahmood
, and
M.A.
Raza
.
Malware Detection Using Machine Learning Algorithms for Windows Platform
.
Lect. Notes Networks Syst.
350
(
April
):
619
632
. (
2022
).
33.
Akhtar
,
M.S.
Evaluation of Machine Learning Algorithms for Malware Detection
. (
2023
).
34.
Irshad
,
A.
,
R.
Maurya
,
M.K.
Dutta
,
R.
Burget
, and
V.
Uher
.
Feature optimization for run time analysis of malware in windows operating system using machine learning approach
.
2019 42nd Int. Conf. Telecommun. Signal Process. TSP
2019
:
255
260
. (
2019
).
35.
Bai
,
J.
, and
J.
Wang
.
Improving malware detection using multi-view ensemble learning
. (
2016
).
36.
Zhang
,
Y.
,
Q.
Huang
,
X.
Ma
,
Z.
Yang
, and
J.
Jiang
.
Using Multi-features and Ensemble Learning Method for Imbalanced Malware Classification
.
966
974
. (
2016
).
37.
Azeez
,
N.A.
,
O.E.
Odufuwa
,
S.
Misra
, and
J.
Oluranti
.
Windows PE Malware Detection Using Ensemble Learning
. (
2021
).
38.
Huang
,
X.
,
L.
Ma
,
W.
Yang
, and
Y.
Zhong
.
A Method for Windows Malware Detection Based on Deep Learning
.
J. Signal Process. Syst.
93
(
2–3
):
265
273
. (
2021
).
39.
Naeem
,
H.
,
B.
Guo
,
F.
Ullah
, and
M.R.
Naeem
.
A Cross-Platform Malware Variant Classification based on Image Representation
.
KSII Trans. Internet Inf. Syst.
37
(
7
):
3756
3777
. (
2019
).
40.
Divakarla
,
U.
,
K.H.K.
Reddy
, and
K.
Chandrasekaran
.
A Novel Approach towards Windows Malware Detection System Using Deep Neural Networks
.
Procedia Comput. Sci.
215
(
2022
):
148
157
. (
2022
).
43.
Azmi Shawkat
Abdulbaqi
,
Ahmed J.
Obaid
&
Maysaa Hameed
Abdulameer
(
2021
)
Smartphone-based E.C.G. signals encryption for transmission and analyzing via IoMTs
,
Journal of Discrete Mathematical Sciences and Cryptography
, DOI:
This content is only available via PDF.
You do not currently have access to this content.