The most important goal of path planning is to find the safest and fastest path between two points in a given environment. In this study, the path planning of a moving robot considers two objective functions: the distance to goals and the number of turning points. This research uses a Multi-Objective Optimization approach by utilizing the results of the A* algorithm to create individuals in the initial population for NSGA-II. The study utilized a 29x29 grid with various kinds of obstacles that must be avoided. The algorithm used is NSGA-II with an initial population using the path generated by the A* algorithm. The genetic operators used are two-point crossover with a probability of 0.9 and polynomial mutation with a probability of 0.01. The simulation results show that the proposed method can produce a path that has fewer turning points and the shortest possible path length. In four study case results, the NSGA-II shows a better performance in reducing the number of turning points. In study case map 1, NSGA-II produces 8 turns while A* produces 13. In study case map 2, NSGA-II produces 8 turns while A* produces 12. Study case map 3 shows significant differences, with NSGA-II producing 26 turns and A* producing 41. Study case 4 yields identical results from both algorithms.

1.
M.
Nazarahari
,
E.
Khanmirza
, and
S.
Doostie
, “
Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm
,”
Expert Syst. Appl.
, vol.
115
, pp.
106
120
,
2019
, doi: .
2.
G.
Klančar
,
A.
Zdešar
,
S.
Blažič
, and
I.
Škrjanc
, “Chapter 4 - Path Planning,” in
Wheeled Mobile Robotics
,
G.
Klančar
,
A.
Zdešar
,
S.
Blažič
, and
I.
Škrjanc
, Eds.,
Butterworth-Heinemann
,
2017
, pp.
161
206
. doi: .
3.
Y.
Li
,
D.
Dong
, and
X.
Guo
, “
Mobile Robot Path Planning based on Improved Genetic Algorithm With A-star Heuristic Method
,” in
2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC)
,
Chongqing, China
:
IEEE
, Dec.
2020
, pp.
1306
1311
. doi: .
4.
G.
Nagib
and
W.
Gharieb
, “
Path planning for a mobile robot using genetic algorithms
,” in
International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC ’04.
,
Cairo, Egypt
:
IEEE
,
2004
, pp.
185
189
. doi: .
5.
K.
Deb
,
A.
Pratap
,
S.
Agarwal
, and
T.
Meyarivan
, “
A fast and elitist multiobjective genetic algorithm: NSGA- II
,”
IEEE Trans. Evol. Comput.
, vol.
6
, no.
2
, pp.
182
197
,
2002
, doi: .
6.
J.
Conesa-Munoz
,
A.
Ribeiro
,
D.
Andujar
,
C.
Fernandez-Quintanilla
, and
J.
Dorado
, “
Multi-path planning based on a NSGA-II for a fleet of robots to work on agricultural tasks
,” in
2012 IEEE Congress on Evolutionary Computation
,
Brisbane, Australia
:
IEEE
, Jun.
2012
, pp.
1
8
. doi: .
7.
Y.
Xue
, “
Mobile Robot Path Planning with a Non-Dominated Sorting Genetic Algorithm
,”
Appl. Sci.
, vol.
8
, no.
11
, p.
2253
, Nov.
2018
, doi: .
8.
M. K.
Singh
,
A.
Choudhary
,
S.
Gulia
, and
A.
Verma
, “
Multi-objective NSGA-II optimization framework for UAV path planning in an UAV-assisted WSN
,”
J. Supercomput.
, vol.
79
, no.
1
, pp.
832
866
, Jan.
2023
, doi: .
9.
S.
Ghambari
,
M.
Golabi
,
J.
Lepagnot
,
M.
Brevilliers
,
L.
Jourdan
, and
L.
Idoumghar
, “
An Enhanced NSGA-II for Multiobjective UAV Path Planning in Urban Environments
,” in
2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)
,
Baltimore, MD, USA
:
IEEE
, Nov.
2020
, pp.
106
111
. doi: .
10.
J.
Blank
and
K.
Deb
, “
Pymoo: Multi-Objective Optimization in Python
,”
IEEE Access
, vol.
8
, pp.
89497
89509
,
2020
, doi: .
11.
J.-W.
Ko
and
D.-Y.
Lee
, “
Path-finding Algorithm using Heuristic-based Genetic Algorithm
,”
J. Korea Game Soc.
, vol.
17
, no.
5
, pp.
123
131
, Oct.
2017
, doi: .
This content is only available via PDF.
You do not currently have access to this content.