This project introduces a comprehensive web application, "Crime Prediction and Reporting," leveraging geospatial data and machine learning algorithms to elevate crime analysis capabilities. By offering intuitive visualization of historical crime data, real-time incident reporting features, and predictive hotspot mapping, the application empowers law enforcement agencies with proactive policing strategies and optimized resource allocation. Emphasizing ethical considerations such as fairness and transparency, the platform ensures community engagement through SMS-based incident reporting, facilitating swift emergency responses. Ultimately, this initiative fosters collaboration between communities and authorities, promoting public safety through data-driven decision-making.

1.
Eck
,
J. E.
(
2006
).
Crime places in crime theory
. In
Weisburd
,
D.
, &
Eck
,
J. E.
(Eds.),
Crime and Place: Crime Prevention Studies
(Vol.
4
, pp.
1
33
).
2.
Chainey
,
S.
, &
Ratcliffe
,
J.
(
2005
).
GIS and Crime Mapping
. In
D.
Weisburd
&
J. E.
Eck
(Eds.),
Crime and Place: Crime Prevention Studies
(Vol.
12
, pp.
1
30
)
3.
Mohler
,
G.
,
Short
,
M. B.
,
Brantingham
,
P. J.
,
Schoenberg
,
F. P.
, &
Tita
,
G. E.
(
2011
).
Self-exciting point process modeling of crime. Journal of the American Statistical Association
,
106
(
493
),
100
108
.
4.
Braga
,
A. A.
, &
Weisburd
,
D.
(
2012
).
The effects of focused deterrence strategies on crime : A systematic review and meta-analysis of the empirical evidence
.
Journal of Research in Crime and Delinquency
,
49
(
3
),
323
358
.
5.
Ratcliffe
,
J. H.
(
2010
). Crime mapping: Spatial and temporal challenges. In
Bruinsma
,
G.
, &
Weisburd
,
D.
(Eds.),
Encyclopedia of Criminology and Criminal Justice
(pp.
377
387
).
Springer
.
6.
Sherman
,
L. W.
, &
Weisburd
,
D.
(
1995
).
General deterrent effects of police patrol in crime “hot spots
”:
A randomized, controlled trial. Justice Quarterly
,
12
(
4
),
625
648
.
7.
Ashby
,
M. P. J.
, &
Bowers
,
K. J.
(
2012
).
Prospective Hot-Spotting: The Future of Crime Mapping? British Journal of Criminology
,
52
(
2
),
285
303
.
8.
Rengert
,
G. F.
, &
Lockwood
,
B.
(
2009
). The geography of illegal drugs. In
Smith
,
M. J.
, &
Tilley
,
N.
(Eds.),
Crime Science: New Approaches to Preventing and Detecting Crime
(pp.
143
161
).
Willan Publishing
.
9.
J.
Deepika
,
Dr.
J.
Akilandeswari
.,
Fall Detection Technique for Older Individuals based on Deep Layered Neural Networks embedded with Transfer Learning.
, DOI: , March
2023
.
10.
Thangaraj
,
K.
Sakthivel
,
M.
Balasamy
,
Suganyadevi
,
S.
Computer-aided cluster formation in wireless sensor networks using machine learning-Journal of Intelligent and Fuzzy Systems.
-
2023
,
45
(
5
), pp.
7415
7428
.
11.
Anitha Elavarasi
S
&
Akilandeswari J.
Cosine
Based Partition Algorithm For Clustering Breast Cancer Data
, vol.
10
, no.
7
, pp.
16769
16789
, ISSN : 0973-4562,
2015
.
12.
Vishwa Kiran
,
S.
,
Kaur
,
I.
,
Thangaraj
,
K.
,
Kingsy Grace
,
R.
,
Arulkumar
,
N.
Machine Learning with Data Science-Enabled Lung Cancer Diagnosis and Classification Using Computed Tomography Images
,
2023
,
23
(
3
),
2240002
.
13.
Akilandeswari
,
J.
,
Naveenkumar
,
A.
,
Sabeenian
,
R. S.
,
Iyyanar
,
P.
,
Paramasivam
,
M. E.
, &
Jothi
,
G.
,
An investigation on indoor navigation systems
1
(pp.
115
124
).
This content is only available via PDF.
You do not currently have access to this content.