In the face of escalating environmental concerns, analyzing, particulate particles with a minimum diameter of 2.5 micrometers, is crucial for understanding air quality dynamics. PM2.5 analysis provides vital insights into air pollutant composition, sources, and potential implications for environmental factors along with one’s health. Leveraging Python, proposed project conducts an comprehensive analysis and predictive modeling of air quality in Dingling city, Beijing, from March 2013 to February 2017. The dataset undergoes meticulous preprocessing and Exploratory Data Analysis to uncover patterns and relationships. Objectives include investigating PM2.5 concentration patterns and understanding environmental factor impacts. For predictive modeling with grid search hyperparameter optimization, ensemble Gradient Boosting Regressor, Random Forest Regressor, and Decision Tree Regressor are utilized. Gradient Boosting Regressor outperforms grid search optimization with an accuracy of 95.67%, according to metrics for evaluating models like Accuracy and Mean Squared Error (MSE). Python guarantees a solid implementation, adding significant knowledge to studies and forecasts of air quality.

1.
R
Son
,
D.
Stratoulias
,
H. C.
Kim
,
J.-H.
Yoon
,
Estimation of surface PM2.5 concentrations from atmospheric gas species retrieved from TROPOMI using deep learning: Impacts of fire on air pollution over Thailand
,
Atmospheric Pollution Research
14
,
101875
(
2023
)
2.
A.
Masood
and
K.
Ahmad
,
Data-driven predictive modeling of PM2.5 concentrations using machine learning and deep learning techniques: a case study of Delhi, India
,
Environmental Monitoring and Assessment
195
,
60
,
10603
(
2023
)
3.
S.
Kumar
,
S.
Mishra
,
S. K.
Singh
,
A machine learning-based model to estimate PM2.5 concentration levels in Delhi’s atmosphere
,
Heliyon
6
,
e05618
(
2020
)
4.
S.
Zhu
,
J.
Tang
,
X.
Zhou
,
P.
Li
,
Z.
Liu
,
C.
Zhang
,
Z.
Zou
,
T.
Li
,
C.
Peng
,
Research progress, challenges, and prospects of PM2.5 concentration estimation using satellite data
,
Environmental Reviews, er-2022-0125
(
2022
)
5.
D.
Núñez-Alonso
,
L. V.
Pérez-Arribas
,
S.
Manzoor
,
J. O.
Cáceres
,
Statistical tools for air pollution assessment: Multivariate and spatial analysis studies in the Madrid region
,
Journal of Analytical Methods in Chemistry
1
9
(
2019
)
6.
S.
Tan
and
Q.
Yuan
,
Estimation of atmospheric PM2.5 based on photos and deep learning
,
IGARSS 2022, 2022 IEEE Int. Geosci. Remote Sens. Symp., Kuala Lumpur, Malaysia
,
7984
7987
(
2022
)
7.
Q.
Zeng
,
Y.
Li
,
J.
Tao
,
M.
Fan
,
L.
Chen
,
L.
Wang
,
Y.
Wang
,
Full-coverage estimation of PM2.5 in the Beijing-Tianjin-Hebei region by using a two-stage model
,
Atmospheric Environment
309
,
119956
(
2023
)
8.
C.
Tong
,
Z.
Shi
,
W.
Shi
,
A.
Zhang
,
Estimation of on-road PM2.5 distributions by combining satellite top-of-atmosphere with microscale geographic predictors for healthy route planning
,
GeoHealth
6
(
9
),
e2022GH000669
(
2022
)
9.
B.
Pan
, “
Application of XGBoost algorithm in hourly PM2.5 concentration prediction
,” in
ICAESEE 2017, IOP Conference Series: Earth and Environmental Science 113
, (
IOP Publishing
,
2018
),
012127
.
10.
J.
Li
,
X.
Li
, and
K.
Wang
,
Atmospheric PM2.5concentration prediction based on time series and interactive multiple model approach
,
Advances in Meteorology
,
1-11
,
1279565
(
2019
)
11.
M. Z.
Joharestani
,
C.
Cao
,
X.
Ni
,
B.
Bashir
,
S.
Talebiesfandarani
,
PM 2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data
,
Atmosphere
10
,
373
(
2019
).
12.
S. A.
Pozza
,
E.
Pinheiro
,
T. T.
Comin
,
M. L.
Gimenes
,
J. R.
Coury
,
Time series analysis of PM2.5 and PM10-2.5 mass concentration in the city of Sao Carlos, Brazil
,
International Journal of Environment and Pollution
,
41
, (
2010
)
13.
J. K.
Deters
,
R.
Zalakeviciute
,
M.
Gonzalez
,
Y.
Rybarczyk
,
Modeling PM 2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters
,
Journal of Electrical and Computer Engineering
Volume
2017
,
5106045
(
2017
) .
14.
D.
Zhu
,
C.
Cai
,
T.
Yang
,
X.
Zhou
,
A machine learning approach for air quality prediction: Model regularization and optimization
. Big Data and Cognitive Computing,
Big Data and Cognitive Computing
,
2
(
1
),
5
(
2018
)
15.
J.
Shen
,
P.
Dai
,
D.
Shen
,
Q.
Tang
,
M.
Xi
,
Y.
Li
, and
C.
Li
,
The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4-NFκB in A549 cell exposed to layer house particulate matter 2.5 (PM2. 5
).
Chemosphere
,
235
, pp.
1134
1145
,(
2019
)
16.
A.
Anchan
,
G.R.
Manasa
,
PM2. 5 Estimation using Supervised Learning Models
,
IJRTE
8
,
2277
3878
(
2020
)
17.
K. M.
Babu
,
J. R.
Beula
,
Air quality prediction based on supervised machine learning methods
,
International Journal of Innovative Technology and Exploring Engineering.
8
, 9S4,
206
212
. (
2019
).
18.
Niharika
,
M.
Venkatadri
,
S.R.
Padma
,
A survey on Air Quality forecasting Techniques
,
International Journal of Computer Science and Information Technologies
, Vol.
5
(
1
),
103
107
(
2014
)
19.
C. R.
Aditya
,
C.R.
Deshmukh
,
D. K.
Nayana
, and
P.G.
Vidyavastu
, P.G.,
Detection and Prediction of Air Pollution using Machine Learning Models
.
International Journal of Engineering Trends and Technology
,
59
(
4
),
204
207
,(
2018
).
20.
M. R.
Delavar
,
A.
Gholami
,
G. R.
Shiran
,
Y.
Rashidi
,
G. R.
Nakhaeizadeh
,
K.
Fedra
,
S. H.
Afshar
,
A novel method for improving air pollution prediction based on machine learning approaches: A case study applied to the capital city of Tehran
,
ISPRS International Journal of Geo-Information
,
8
(
2
),
99
, (
2019
)
This content is only available via PDF.
You do not currently have access to this content.