The degree of a vertex of a (molecular) graph is the number of neighbor vertices of the vertex. A large number of molecu- lar graph based structure descriptors (topological indices) that depend on vertex degrees have been conceived. Topological indices, as numerical functions of (usually hydrogen-suppressed) molecular graph, represent an important type of molecular descriptors. These are important in QSAR and QSPR studies to relate biological or chemical properties of molecules to specific molecular descriptors, thus enabling prediction of properties of molecules based on their structure only and without their synthetization. In this paper we present our results on computation of various topological indices for chemical graphs with hexagonal or honey- comb structure. In particular, the Randić index, generalized Randić index, geometric-arithmetic index, Zagreb index, and some others, are studied. We also propose a topological classification of fullerenes based on double bonds in pentagons of the fullerenes. Then, graph isomorphism algorithms using topological indices, e.g. Wiener and Randić indices, of hexagonal chemical graphs are discussed and comparative analysis based on computations is presented. Some directions of future research are briefly outlined.

1.
N.
Trinajstić
,
Chemical Graph Theory
(
CRC Press
,
Boca Raton
,
1993
).
2.
R.
Todeschini
and
V.
Consonni
,
Handbook of Molecular Descriptors
(
Wiley-VCH
,
Weinheim
,
2000
).
3.
M. P.
Hanson
and
D. H.
Rouvray
,
J. Phys. Chem.
91
,
2981
2985
(
1987
).
4.
I.
Gutman
and
N.
Trinajstić
,
Chem. Phys. Lett.
17
,
535
538
(
1972
).
5.
C. F. W. I.
Gutman
,
B.
Rućić
,
N.
Trinajstić
,
Chem. Phys. Lett.
62
,
3399
3405
(
1975
).
6.
M.
Ghirardello
, et al,
Dyes and Pigments
186
, p.
108998
(
2021
).
7.
H. H. H.A.
Colorado
,
S.R.
Dhage
,
Mater. Sci. Eng. B
176
,
1161
1168
(
2011
).
8.
D.
Vukičević
and
B.
Furtula
,
J. Math. Chem.
46
,
1369
1376
(
2009
).
9.
B.
Furtula
, et al,
J. Math. Chem.
48
,
370
380
(
2010
).
10.
B.
Zhou
and
N.
Trinajstić
,
J. Math. Chem.
46
,
1252
1270
(
2009
).
11.
B.
Zhou
and
N.
Trinajstić
,
J. Math. Chem.
47
,
210
218
(
2010
).
12.
I.
Gutman
,
MATCH Commun. Math. Comput. Chem.
86
,
11
16
(
2021
).
13.
D.
Vukičević
and
M.
Gašperov
,
Croat. Chem. Acta
83
,
243
260
(
2010
).
14.
F.
Li
, et al,
J. Math. Chem.
58
,
2108
2139
(
2020
).
15.
R. Š. V.
Andova
,
F. Kardoš, Ars Math. Contemp.
11
,
353
379
(
2016
).
16.
B.
Grünbaum
,
Convex Polytopes
(
Springer
,
Berlin
,
2003
).
17.
R. C.
Haddon
, et al,
J. Am. Chem. Soc.
120
,
2337
2342
(
1998
).
18.
R.
Taylor
and
D. R.
Walton
,
Nature
363
,
685
693
(
1993
).
19.
A.
Vasilyev
and
D.
Stevanović
,
MATCH Commun. Math. Comput. Chem.
71
,
657
680
(
2013
).
20.
B.
McKay
,
Congr. Numer.
30
,
45
87
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.