Unlike Decision Tree (DT), the goal of this learning is to improve the accuracy of Support Vector Machine (SVM) traffic flow projections for site visitors. Materials and methods: Predictions of short-term traffic flows are erroneous because existing approaches do not account for the complicated nonlinearity of visitor patterns. In this research, we offer a deep learning-based model that employs a unique hybrid approach and multi-layer architectures to autonomously extract fundamental components of visitors’ drift data. Results: Data from both the training and testing sets has been thoroughly examined. The Support Vector Machine (SVM) achieves a higher accuracy rate of 97.04% compared to the Decision Tree (DT), which only manages 92.38%. With p-values below 0.05 and 0.001, the results show that the groups are statistically significant. Conclusion: Support Vector Machine (SVM) outperforms Decision Tree (DT) algorithm when it comes to forecasting traffic speed and flow.

1.
Subramaniam
,
Rajalakshmi
,
Senthilkumar
Nakkeeran
, and
Sanjay
Mohapatra
.
2021
.
Teamwork Quality: Why It Matters in Enhancing the Creativity of Software Organizations
.
Emerald Group Publishing.
2.
Luhach
,
Ashish
Kumar
,
Dharm Singh
Jat
,
Kamarul Bin Ghazali
Hawari
,
Xiao-Zhi
Gao
, and
Pawan
Lingras
.
2019
.
Advanced Informatics for Computing Research: Third International Conference, ICAICR 2019
,
Shimla, India
, June 15–16,
2019
, Revised Selected Papers, Part I. Springer Nature.
3.
Gdoutos
,
E. E.
2006
.
Fracture Mechanics: An Introduction
.
Springer Science & Business Media
4.
He
,
Jing
,
Philip S.
Yu
,
Yong
Shi
,
Xingsen
Li
,
Zhijun
Xie
,
Guangyan
Huang
,
Jie
Cao
, and
Fu
Xiao
.
2020
.
Data Science: 6th International Conference, ICDS 2019
,
Ningbo, China
, May 15–20,
2019
, Revised Selected Papers. Springer Nature.
5.
Khanna
,
Ashish
,
Deepak
Gupta
,
Zdzisław
Pólkowski
,
Siddhartha
Bhattacharyya
, and
Oscar
Castillo
.
2020
.
Data Analytics and Management: Proceedings of ICDAM
.
Springer Nature
.
6.
Khanna
,
Ashish
,
Deepak
Gupta
,
Zdzisław
Pólkowski
,
Siddhartha
Bhattacharyya
, and
Oscar
Castillo
.
2020
.
Data Analytics and Management: Proceedings of ICDAM.
Spring er Nbture
.
7.
Zhang
,
Xian-Da
.
2020
.
A Matrix Algebra Approach to Artificial Intelligence
.
Springer Nature
.
8.
Analide
,
Cesar
,
Paulo
Novais
,
David
Camacho
, and
Hujun
Yin
.
2020
.
Intelligent Data Engineering and Automated Learning
IDEAL 2020: 21st International Conference, Guimaraes, Portugal
, November 4–6,
2020
, Proceedings, Part II. Springer Nature.
9.
Ortega
,
Antonio
.
2021
.
Introduction to Graph Signal Processing
.
Cambridge University Press
.
10.
Subramanya
,
Amarnag
, and
Partha Pratim
Talukdar
.
2014
.
Graph-Based Semi-Supervised Learning
.
Morgan & Claypool Publishers
.
11.
Escalante
,
Hugo
Jair
,
Sergio
Escalera
,
Isabelle
Guyon
,
Xavier
Baró
,
Yağmur
Güçlütürk
,
Umut
Güçlü
, and
Marcel
van Gerven
.
2018
.
Explainable and Interpretable Models in Computer Vision and Machine Learning
.
Springer
.
12.
Deliyannis
,
T.
,
Yichuang
Sun
, and
J. K.
Fidler
.
2018
.
Continuous-Time Active Filter Design
.
CRC Press
.
13.
Tetko
,
Igor
V.
,
Věra
Kůrková
,
Pavel
Karpov
, and
Fabian
Theis
.
2019
.
Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series
:
28th International Conference on Artificial Neural Networks
,
Munich, Germany
, September 17–19,
2019
, Proceedings, Part IV. Springer Nature.
14.
Escalante
,
Hugo
Jair
,
Sergio
Escalera
,
Isabelle
Guyon
,
Xavier
Baró
,
Yağmur
Güçlütürk
,
Umut
Güçlü
, and
Marcel
van Gerven
.
2018
.
Exblainable and Interpretable Models in Computer Vision and Machine Learning
.
Springer
.
15.
Sun
,
Yichuang
, and
Institution of Electrical Engineers
.
2002
.
Design of High Frequency Integrated Analogue Filters
.
IET
.
16.
Soares
,
Carlos
Guedes
.
2021
.
Maritime Technology and Engineering 5 Volume 1
:
Proceedings of the 5th International Conference on Maritime Technology and Engineering (MARTECH 2020
), November 16-19,
2020
,
Lisbon, Portugal
.
CRC Press
.
17.
Madhu
,
S.
,
Devarajan
,
Y.
, &
Natrayan
,
L.
(
2023
).
Effective utilization of waste sugarcane bagasse filler- reinforced glass fibre epoxy composites on its mechanical properties-waste to sustainable production
.
Biomass Conversion and Biorefinery
,
13
(
16
),
15111
15118
.
18.
Janardhana
,
K.
,
Sowmya
Dhanalakshmi
, C.,
Thilagham
,
K.T.
,
Chinnaiyan
,
S.K.
,
Jai Shanker
Pillai
, H.P.,
Palani
,
K.
and
De Poures
,
M.V.
,
2024
.
Experimental investigation on utilization of Sesbania grandiflora residues through thermochemical conversion process for the production of value added chemicals and biofuels
.
Scientific Reports
,
14
(
1
), p.
7283
.
19.
Manikandan
,
S.
,
Krishnan
,
R. Y.
,
Vickram
,
S.
,
Subbaiya
,
R.
,
Kim
,
W.
,
Govarthanan
,
M.
, &
Karmegam
,
N.
(
2023
).
Emerging nanotechnology in renewable biogas production from biowastes: Impact and optimization strategies–A review. Renewable and Sustainable
Energy Reviews
,
181
,
113345
.
20.
Vidya
,
D.
,
Nayana
,
K.
,
Sreelakshmi
,
M.
,
Keerthi
,
K. V.
,
Mohan
,
K. S.
,
Sudhakar
,
M. P.
, &
Arunkumar
,
K.
(
2021
).
A sustainable cultivation of microalgae using dairy and fish wastes for enhanced biomass and bio-product production
.
Biomass Conversion and Biorefinery
,
1
15
.
21.
Muralidaran
,
V. M.
,
Natrayan
,
L.
,
Kaliappan
,
S.
, &
Patil
,
P. P.
(
2023
).
Grape stalk cellulose toughened plain weaved bamboo fiber-reinforced epoxy composite: load bearing and time-dependent behavior
.
Biomass Conversion and Biorefinery
,
1
8
.
22.
Chandrasekaran
,
G.
,
Kumar
,
N. S.
,
V
,
G.
,
Priyadarshi
,
N.
, &
Khan
,
B.
(
2023
).
IoT enabled smart solar water heater system using real time ThingSpeak IoT platform
.
IET Renewable Power Generation.
23.
Sasikumar
,
R.
,
Prabagaran
,
S.
,
Venkatesh
,
R.
, &
Kumaravel
,
S.
(
2023
).
Effect of tamarind fruit fiber contribution in epoxy resin composites as biodegradable nature: characterization and property evaluation
.
Biomass Conversion and Biorefinery
,
1
9
.
24.
Raja
,
T.
, &
Devarajan
,
Y.
(
2023
).
A novel way of converting waste-enriched composites to lightweight, biodegradable resources: a property analysis
.
Biomass Conversion and Biorefinery
,
1
11
.
25.
Palaniyappan
,
S.
,
Sivakumar
,
N. K.
, &
Sekar
,
V.
(
2023
).
Sustainable approach to the revalorization of crab shell waste in polymeric filament extrusion for 3D printing applications
.
Biomass Conversion and Biorefinery
,
1
18
.
26.
Raja
,
T.
, &
Devarajan
,
Y.
(
2023
).
Visco-elastic properties and thermal analysis of corchorus/elastane yarn– reinforced biocomposites
.
Biomass Conversion and Biorefinery
,
1
10
.
27.
V. P.
Veeraraghavan
and V. A S, “
Revolutionizing Material Science: Unravelling Novel Insights and Innovations in Nanomaterials
,”
International Journal of Mechanical Engineering
, vol.
10
, no.
10
, pp.
38
46
, Oct.
2023
, doi: .
28.
V. A.S
, “
Functional and Smart Nanomaterials in Energy: Advances and Applications
,”
International Journal of Mechanical Engineering
, vol.
10
, no.
9
, pp.
44
52
, Sep.
2023
, doi: .
29.
Pooja
,
M.
,
C.
Thangapandi
"
New algorithmic approach for solving transportation problem in fuzzy environment with trapezoidal fuzzy numbers
." In
American Institute of Physics Conference Series
, vol.
2853
, no.
1
, p.
020057
.
2024
. .
30.
Sakthivel
,
K.
,
K. R.
Balasubramanian
, "
Solving Assignment Problem in Fuzzy Environment by Using a New Ranking Method
."
Journal of Interdisciplinary Cycle Research
(
2019
):
191
198
.
31.
Vivekanandan
,
M.
"
Locating chromatic number of direct product of some graphs
."
Malaya Journal of Matematik (MJM)
1
(
2020
):
363
366
.
This content is only available via PDF.
You do not currently have access to this content.