Noise, particularly Gaussian noise, can distort images and reduce information. The James Webb Space Telescope (JWST) is vital for understanding the universe and capturing images that inspire people. This paper introduces several nonlinear filters to remove Gaussian noise from the Carina Nebula Image, first image taken by JWST. The filters consider similarities and distances between central pixels and preserve edges as advanced features. However, in this paper, we propose a new nonlinear filter. This filter features a series of non-linear operations starting with cross- validation (CV) techniques to extract the appropriate smoothing parameter of the image. This parameter is used to create the density function, which is then used to apply a total variation noise reduction technique to eliminate the noise. As a result, these candidates are critical to achieving space exploration’s objectives, showcasing technology innovation, and expanding scientific understanding. The results demonstrate that the suggested filter outperforms other noise reduction filters in image restoration at various Gaussian noise densities, yielding PSNR and SSIM values of (52.12) and (0.99), respectively. When the noise ratio is 0.01, the filters’ output surpasses the differences in noise ratio.

1.
Abdul
Wadood
, M. and
Ghalib
,
A.
(
2018
).
Use Some Statistical Algorithms in Mock Hacking Satellite Images
.
Journal Of Economics and Administrative Sciences
, Vol.
108
, No.
24
, pp.
474
487
.
2.
Ali
,
M.
(
2018
).
MRI Medical Image Denoising by Fundamental Filters
.
High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications
, Vol.
43
, No.
17
, pp.
658
666
. .
3.
Angella
,
S.
,
Ari
,
S.
and
Rini
,
I.
(
2019
).
Application of Denoising Non-Local Mean Filter (NLM) in MRI Brain Image T2WI TSE SENSE
.
International Journal of Allied Medical Sciences and Clinical Research (IJAMSCR)
, Vol.
7
, No.
3
, pp.
1033
1039
.
4.
Angulo
,
J.
(
2013
).
Morphological Bilateral Filtering
.
SIAM Journal on Imaging Sciences
, Vol.
6
, No.
3
, pp.
1790
1822
. .
5.
Anh
,
N.
(
2014
).
Image Denoising by Adaptive Non-Local Bilateral Filter
.
International Journal of Computer Applications
, Vol.
99
, No.
12
.
6.
Azzabou
,
Noura
,
Nikos
Paragios
,
Frederic
Guichard
, and
Frederic
Cao
. (
2007
).
Variable Bandwidth Image Denoising Using Image-Based Noise Models
.
2007 IEEE Conference on Computer Vision and Pattern Recognition.
.
7.
Bakurov
,
I.
,
Marco
,
B.
,
Raimondo
,
S.
,
Mauro
,
C.
and
Leonardo
,
V.
(
2022
).
Structural Similarity Index (SSIM) Revisited: A Data-Driven Approach
.
Expert Systems with Applications, No. 189.
.
8.
Buades
,
A.
,
B.
Coll
, and
Morel
,
M.
(
2005
).
A Non-Local Algorithm for Image Denoising
.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05
), No. 16. .
9.
Chacón
,
J. E.
, and
T.
Duong
. (
2009
).
Multivariate Plug-in Bandwidth Selection with Unconstrained Pilot Bandwidth Matrices
.
TEST 19
, no.
2
.
375
98
. .
10.
Chen
,
B.
,
Yi-Syuan
,
T.
and
Jia-Li
,
Y.
(
2020
).
Gaussian-Adaptive Bilateral Filter
.
IEEE Signal Processing Letters, No. 27
, pp.
1670
1674
. .
11.
Chen
,
H.
and
Jing
,
G.
(
2022
).
Non-Local Mean Denoising Algorithm Based on Fractional Compact Finite Difference Scheme Effectively Reduces Speckle Noise in Optical Coherence Tomography Images
.
Micromachines
, Vol.
13
, No.
12
, pp.
2039
2039
. .
12.
Chiu
,
Shean-Tsong
. (
1996
).
A Comparative Review of Bandwidth Selection for Kernel Density Estimation
.
Institute of Statistical Science, Statistica Sinica
6
, no.
1
.
129
45
.
13.
Chu
,
Chi-Yang
,
Daniel
Henderson
, and
Christopher
Parmeter
. (
2015
).
Plug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data.
Econometrics
3
, no.
2
.
199
214
. .
14.
Feng
,
X.
and
Zhongliang
,
P.
(
2021
).
Detail Enhancement for Infrared Images Based on Relativity of Gaussian-Adaptive Bilateral Filter
.
OSA Continuum
, Vol.
4
, No.
10
, pp.
2671
2676
. .
15.
Florence
,
Kimari
,
Adem
Aggrey
, and
Kiti
Leonard
. (
2019
).
Efficiency of Various Bandwidth Selection Methods across Different Kernels
.
IOSR Journal of Mathematics (IOSR-JM)
15
, no.
3
.
55
62
.
16.
Ghalib
,
A.
and
Abdul
Wadood
, M. (
2020
).
Using Multidimensional Scaling Technique in Image Dimension Reduction for Satellite Image
.
Periodicals of Engineering and Natural Sciences
, Vol.
8
, No.
1
, pp.
447
454
. .
17.
Ghosh
,
S.
,
Pravin
,
N.
and
Kunal
,
C.
(
2018
).
Optimized Fourier Bilateral Filtering
.
IEEE Signal Processing Letters
, Vol.
25
, No.
10
, pp.
1555
1559
. .
18.
Hambal
,
A.
,
Zhijun
,
P.
and
Faustini
,
I.
(
2017
).
Image Noise Reduction and Filtering Techniques
.
International Journal of Science and Research (IJSR)
, Vol.
6
, No.
3
, pp.
2033
2038
. .
19.
Hang
,
Hanyuan
,
Ingo
Steinwart
,
Yunlong
Feng
, and
Johan A.K.
Suykens
. (
2016
).
Kernel Density Estimation for Dynamical Systems
.
Journal of Machine Learning Research
1
.
1
49
. .
20.
Heo
,
Y.
,
Kyuseok
,
K.
and
Youngjin
,
L.
(
2020
).
Image Denoising Using Non-Local Means (NLM) Approach in Magnetic Resonance (MR) Imaging: A Systematic Review
.
Applied Sciences
, Vol.
10
, No.
20
, pp.
7028
7028
. .
21.
Hore
,
A.
and
Djemel
,
Z.
(
2010). Image Quality Metrics: PSNR vs. SSIM
.
2010 20th International Conference on Pattern Recognition. No. 22
. .
22.
Huihua
,
K.
,
Gao
,
W.
and
Di
,
Y.
(
2023
).
An Improved Non-Local Means Algorithm for CT Image Denoising, No. 25.
.
23.
Hussein
,
Mohammad M.
Faqe
. (
2012
).
Comparison of Time Series Models before and after Using Wavelet Shrinkage Filtering to Forecast the Amount of Natural Gas in Iraq
.
Cihan University-Erbil Scientific Journal (CUESJ)
6
, no.
1
.
32
46
.
24.
Ibraheem
,
Noor
A.
,
Mokhtar M.
Hasan
,
Rafiqul Z.
Khan
, and
Pramod K.
Mishra
. (
2012
).
Understanding Color Models: A Review
.
ARPN Journal of Science and Technology
2
, no.
3
.
265
75
.
25.
Kaur
,
B.
,
Ayush
,
D.
and
Bhawna
G.
(
2020
).
Comparative Analysis of Bilateral Filter and Its Variants for Magnetic Resonance Imaging
.
The Open Neuroimaging Journal
, Vol.
13
, No.
1
, pp.
21
29
. .
26.
Kolhe
,
Y.
and
Yogendra
,
J.
(
2013
).
Removal of Salt and Pepper Noise from Satellite Images
.
International Journal of Engineering Research and Technology (IJERT)
, Vol.
2
, No.
11
, pp.
2051
2058
. .
27.
Khedkar
,
Sameer
,
Kalyani
Akant
, and
Milind M.
Khanapurkar
. (
2016
).
Image Denoising Using Wavelet Transform
.
International Journal of Research in Engineering and Technology
5
, no.
4
.
206
12
.
28.
Liu
,
B.
and
Jianbin
,
L.
(
2018
).
Non-Local Mean Filtering Algorithm Based on Deep Learning
.
MATEC Web of Conferences
, Vol.
23
, No.
2
. .
29.
Liu
,
W.
,
Pingping
,
Z.
,
Xiaogang
,
C.
,
Chunhua
,
S.
,
Xiaolin
,
H.
and
Jie
,
Y.
(
2020
).
I am embedding a Bilateral Filter in Least Squares for Efficient Edge-Preserving Image Smoothing
.
IEEE Transactions on Circuits and Systems for Video Technology
, Vol.
30
, No.
1
, pp.
23
35
. .
30.
Loader, Clive R.
(199).
Bandwidth Selection: Classical or Plug-In?
The Annals of Statistics
27
, no.
2
. .
31.
Muslim
,
A.
and
Ghalib
,
A.
(
2019
).
Use Principal Component Analysis Technique to Dimensionality Reduction to Multi-Source
.
Journal Of Economics and Administrative Sciences
, Vol.
25
, No.
115
, pp.
464
473
. .
32.
Nabahat
,
M.
,
Farzin
,
K.
and
Nima
,
N.
(
2022
).
Optimisation of Bilateral Filter Parameters Using a Whale Optimization Algorithm
.
Research in Mathematics
, Vol.
9
, No.
1
. .
33.
Oliveira
,
M.
,
R.M.
Crujeiras
, and
A.
Rodríguez-Casal
. (
2012
).
A Plug-in Rule for Bandwidth Selection in Circular Density Estimation
.
Computational Statistics & Data Analysis
56
, no
12
.
3898
3908
.
34.
Podpora
,
Michal
,
Grzegorz Paweł Korbaś
, and
Aleksandra
Kawala-Janik
. (
2014
).
YUV vs RGB— Choosing a Color Space for Human-Machine Interaction
.
Annals of Computer Science and Information Systems.
.
35.
Saker
,
S.
(
2012
).
Use of Non-Local Means Filter to Denoise Image Corrupted by Salt and Pepper Noise
.
Signal and amp Image Processing: An International Journal
, Vol.
3
, No.
2
, pp.
223
235
. .
36.
Swamy
,
S.
and
Kulkarn
,
P.
(
2020
).
A Basic Overview of Image Denoising Techniques
.
International Research Journal of Engineering and Technology (IRJET)
, Vol.
7
, No.
5
, pp.
850
857
.
37.
Wagner
,
F.
,
Mareike
,
T.
,
Felix
,
D.
,
Mingxuan
,
G.
,
Mayank
,
P.
,
Stefan
,
P.
,
Noah
,
M.
,
Laura
,
P.
,
Yixing
,
H.
and
Andreas
,
M.
(
2022
).
Trainable Joint Bilateral Filters for Enhanced Prediction Stability in Low-Dose CT
.
Scientific Reports
, Vol.
12
, No.
1
. .
38.
Wang
,
Z.
, Bovik,
C.
Sheikh
, R. and
Simoncelli
,
P.
(
2004
).
Image Quality Assessment: From Error Visibility to Structural Similarity
.
IEEE Transactions on Image Processing
, vol.
13
, No.
4
, pp.
600
612
. .
39.
Węglarczyk
,
Stanisław
. (
2018
).
Kernel Density Estimation and Its Application
.
ITM Web of Conferences
23
. .
40.
Wilson
,
B.
and
Julia
,
D.
(
2013
).
A Survey of Non-Local Means Based Filters for Image Denoising
.
International Journal of Engineering Research and Technology (IJERT)
, Vol.
2
, No.
10
, pp.
3768
3771
.
41.
You
,
J.
and
Nam
,
C.
(
2013
).
An Adaptive Bandwidth Nonlocal Means Image Denoising in Wavelet Domain
.
EURASIP Journal on Image and Video Processing
, No.
1
. .
42.
Kamran
Yeganegi
et al
2020
J. Phys.: Conf. Ser.
1530
012110
.
This content is only available via PDF.
You do not currently have access to this content.