One of the most frequent cyberattacks is malware, which is spreading throughout networks at an accelerating rate. Traffic including malware is always asymmetric compared to benign software traffic, which is always symmetric. Fortunately, malware can be identified and distinguished from legitimate activities using a number of artificial intelligence techniques. However, there hasn’t been enough attention paid to the issue of handling massive and high-dimensional data. This study presents a high-performance malware detection system that makes use of feature selection and machine learning techniques. Huge datasets used involve Two different malware groups for Android and Windows are used to detect malware and distinguish it from benign activities. The software sets are pre-processed, features are extracted and then feature selection is applied using Cuckoo Search to produce different feature-selected datasets. The four machine learning models: Random Forests, Gradient Boosting, Stochastic Gradient Descent, and Extra Trees are then trained using two different sets of data sets extracted from each system and defined by features. Afterwards, a number of performance indicators (accuracy, precision, recall, and F1 score) are used to assess the trained models. The results indicate that the Random Forests algorithm achieved the highest accuracy, reaching 99%, on the data of both systems, while the rest of the algorithms achieved varying accuracy.

1.
S.
Kannimuthu
,
K. S.
Bhuvaneshwari
,
D.
Bhanu
,
A.
Vaishnavi
,
S.
Ahalya
, “
Performance evaluation of machine learning algorithms for dengue disease prediction
,”
J. Comput. Theor. Nanosci.
, vol.
16
, no.
12
, pp.
5105
5110
,
2019
, doi: .
2.
M.
Akhtar
and
T.
Feng
, “
IOTA Based Anomaly Detection Machine learning in Mobile Sensing
,”
EAI Endorsed Trans. Creat. Technol.
, vol.
9
, no.
30
, p.
172814
,
2022
, doi: .
3.
K.
Sethi
,
R.
Kumar
,
L.
Sethi
,
P.
Bera
, and
P. K.
Patra
, “
A novel machine learning based malware detection and classification framework
,”
2019 Int. Conf. Cyber Secur. Prot. Digit. Serv. Cyber Secur.
2019
, no. June, pp.
1
4
,
2019
, doi: .
4.
A. A.
Darem
,
F. A.
Ghaleb
,
A. A.
Al-Hashmi
,
J. H.
Abawajy
,
S. M.
Alanazi
, and
A. Y.
Al-Rezami
, “
An Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model Using Concept Drift Detection and Sequential Deep Learning
,”
IEEE Access
, vol.
9
, pp.
97180
97196
,
2021
, doi: .
5.
S.
Sharma
,
C. Rama
Krishna
, and
S. K.
Sahay
, “
Detection of advanced malware by machine learning techniques
,”
Adv. Intell. Syst. Comput.
, vol.
742
, pp.
333
342
,
2019
, doi: .
6.
M. S.
Akhtar
and
T.
Feng
, “
Malware Analysis and Detection Using Machine Learning Algorithms
,”
Symmetry (Basel)
., vol.
14
, no.
11
,
2022
, doi: .
7.
M. S.
Akhtar
and
T.
Feng
, “
Detection of Sleep Paralysis by using IoT Based Device and Its Relationship Between Sleep Paralysis And Sleep Quality
,”
EAI Endorsed Trans. Internet Things
, vol.
8
, no.
30
, p.
e4
,
2022
, doi: .
8.
E.
Raff
and
C.
Nicholas
, “
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
,”
2020
, [Online]. Available: http://arxiv.org/abs/2006.09271
9.
J.
Li
,
L.
Sun
,
Q.
Yan
,
Z.
Li
,
W.
Srisa-An
, and
H.
Ye
, “
Significant Permission Identification for Machine-Learning-Based Android Malware Detection
,”
IEEE Trans. Ind. Informatics
, vol.
14
, no.
7
, pp.
3216
3225
,
2018
, doi: .
10.
J. F.
Gantz
et al., “
The Link between Pirated Software and Cybersecurity Breaches
,”
Natl. Univ. Singapore IDC
, no. March, p.
35
,
2014
, [Online]. Available: https://blogs.microsoft.com/wp-content/uploads/2016/04/IDCNUSFinalResearch.pdf
11.
B.
Amro
, “
Malware Detection Techniques for Mobile Devices
,”
SSRN Electron. J.
, vol.
7
, no.
4
, pp.
1
10
,
2019
, doi: .
12.
M. K.
Al-thiabi
, “
The Prediction of COVID - 19 Virus Mutation Using Long Short - Term Memory
,”
2022 8th Int. Conf. Contemp. Inf. Technol. Math.
, pp.
113
118
,
2022
, doi: .
13.
N. S.
Sani
,
M. I.
Esa
, and
B. A.
Musawi
, “
Malware Detection Using Deep Learning and Correlation-Based Feature Selection
,”
Symmetry (Basel)
., vol.
15
, no.
123
, pp.
1
21
,
2023
.
14.
M.
Kakavand
,
M.
Dabbagh
, and
A.
Dehghantanha
, “
Application of machine learning algorithms for android malware detection
,”
ACM Int. Conf. Proceeding Ser.
, no. November,
2018
, doi: .
15.
A.
Irshad
,
R.
Maurya
,
M. K.
Dutta
,
R.
Burget
, and
V.
Uher
, “
Feature optimization for run time analysis of malware in windows operating system using machine learning approach
,”
2019 42nd Int. Conf. Telecommun. Signal Process. TSP 2019
, pp.
255
260
,
2019
, doi: .
16.
M.
Dhalaria
and
E.
Gandotra
, “
Android malware detection using chi-square feature selection and ensemble learning method
,”
PDGC 2020 - 2020 6th Int. Conf. Parallel, Distrib. Grid Comput
., pp.
36
41
,
2020
, doi: .
17.
X.
Huang
,
L.
Ma
,
W.
Yang
, and
Y.
Zhong
, “
A Method for Windows Malware Detection Based on Deep Learning
,”
J. Signal Process. Syst.
, vol.
93
, no. 2–3, pp.
265
273
,
2021
, doi: .
18.
B.
Urooj
,
M. A.
Shah
,
C.
Maple
,
M. K.
Abbasi
, and
S.
Riasat
, “
Malware Detection: A Framework for Reverse Engineered Android Applications Through Machine Learning Algorithms
,”
IEEE Access
, vol.
10
, no. January, pp.
89031
89050
,
2022
, doi: .
19.
A.
Hussain
,
M.
Asif
,
M.
Bin Ahmad
,
T.
Mahmood
, and
M. A.
Raza
, “
Malware Detection Using Machine Learning Algorithms for Windows Platform
,”
Lect. Notes Networks Syst.
, vol.
350
, no. April, pp.
619
632
,
2022
, doi: .
20.
U.
Divakarla
,
K. H. K.
Reddy
, and
K.
Chandrasekaran
, “
A Novel Approach towards Windows Malware Detection System Using Deep Neural Networks
,”
Procedia Comput. Sci.
, vol.
215
, no.
2022
, pp.
148
157
,
2022
, doi: .
21.
R.
Gupta
,
B. S.
Solanki
,
M.
Kumar
, and
R.
Murugan
, “
Detecting Malware on the Android Phones Based on Golden Jackal Optimized Support Vector Machine
,”
Int. J. Intell. Syst. Appl. Eng.
, vol.
11
, no.
8s
, pp.
01
07
,
2023
.
22.
H. B.
Kibria
and
A.
Matin
, “
The severity prediction of the binary and multi-class cardiovascular disease−A machine learning-based fusion approach
,”
Comput. Biol. Chem.
, vol.
98
, no.
March
,
2022
, doi: .
23.
A.
Natekin
and
A.
Knoll
, “
Gradient boosting machines, a tutorial
,”
Front. Neurorobot.
, vol.
7
, no. DEC,
2013
, doi: .
24.
M. S. I.
Alsumaidaie
et al., “
Intelligent System for Student Performance Prediction Using Machine Learning
,”
Baghdad Science Journal
, May
2024
, doi: .
25.
Y.
Lou
et al., “
Individualized empirical baselines for evaluating the energy performance of existing buildings
,”
Sci. Technol. Built Environ.
, vol.
29
, no.
1
, pp.
19
33
,
2023
, doi: .
This content is only available via PDF.
You do not currently have access to this content.