Malware which targets wireless PDAs or mobile phones with the intention of crashing the system as well as leaking or destroying confidential information is known as mobile malware. It is getting more and harder to protect PDA networks and cordless phones from intrusions via viruses as well as other malware as these devices grow more widely used and complex. Users think highly of the growing number of Recently developed malware. Therefore, a new model was proposed for securing the operating system of the Android device by allowing to installed the application or not. The model was based on a dataset of malware for Android applications by building a convolutional neural network CNN and K-NN models for classification stage, whether they are malicious application or not. First apply features select by correlation-based feature selection, then train the applications based on their selected features. In order to test the accuracy of two models, Confusion Matrix is used. The last stage, after detecting the malware is let the user to allow or not to activate the download of the application to the Android device. The entire model is proposed to provide a secure environment for Android from malware. It has been proven that the permissions-based approach can classify malware or regular software with high accuracy using the CNN model, reaching 0.9880, while the accuracy value was 0.9711 using the KNN.

1.
S. M.
Shehata
,
A.
El Fiky
,
M.
Torky
,
T.
Farag
, and
N.
Abbas
, “
Android malware prevention on permission based
,”
International journal of applied engineering research
, vol.
15
, no.
1
, pp.
5
11
,
2020
.
2.
A. A.
Abdulhameed
,
R. J.
Al-Azawi
, and
B. M.
Al-Mahdawi
, “
Modeling web security analysis attacks with cysemol tool
,”
Al-Mustansiriyah Journal of Science
, vol.
31
, no.
3
, pp.
101
109
,
2020
.
3.
N.
Zhang
,
Y.-a.
Tan
,
C.
Yang
, and
Y.
Li
, “
Deep learning feature exploration for android malware detection
,”
Applied Soft Computing
, vol.
102
, p.
107069
,
2021
.
4.
S.
Wang
et al, “
Deep and broad URL feature mining for android malware detection
,”
Information Sciences
, vol.
513
, pp.
600
613
,
2020
.
5.
O.
Smartphone
, “
market share worldwide 2009-2015| Statistic
,”
Statista
https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-systems,
2017
.
6.
S. Y.
Yerima
and
S.
Sezer
, “
Droidfusion: A novel multilevel classifier fusion approach for android malware detection
,”
IEEE transactions on cybernetics
, vol.
49
, no.
2
, pp.
453
466
,
2018
.
7.
R.
Tahir
, “
A study on malware and malware detection techniques
,”
International Journal of Education and Management Engineering
, vol.
8
, no.
2
, p.
20
,
2018
.
8.
R.
Goyal
,
A.
Spognardi
,
N.
Dragoni
, and
M.
Argyriou
, “
SafeDroid: a distributed malware detection service for Android
,” in
2016 IEEE 9th international conference on service-oriented computing and applications (SOCA
),
2016
:
IEEE
, pp.
59
66
.
9.
J.
Saxe
and
K.
Berlin
, “
Deep neural network based malware detection using two dimensional binary program features
,” in
2015 10th international conference on malicious and unwanted software (MALWARE
),
2015
:
IEEE
, pp.
11
20
.
10.
J.
Jung
et al, “
Android malware detection based on useful API calls and machine learning
,” in
2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE
),
2018
:
IEEE
, pp.
175
178
.
11.
R. M.
Abdullah
,
S. A. H.
Alazawi
, and
P.
Ehkan
, “
SAS-HRM: Secure Authentication System for Human Resource Management
,”
Al-Mustansiriyah Journal of Science
, vol.
34
, no.
3
, pp.
64
71
,
2023
.
12.
R.
Srinivasan
,
S.
Karpagam
,
M.
Kavitha
, and
R.
Kavitha
, “An Analysis of Machine Learning-Based Android Malware Detection Approaches,” in
Journal of Physics: Conference Series
,
2022
, vol.
2325
, no.
1
:
IOP Publishing
, p.
012058
.
13.
N. N. M.
Nasri
,
M. F. Ab
Razak
,
R. R.
Saedudin
,
S.
Mohamad
, and
A. F.
Asmara
, “
Android malware detection system using machine learning
,”
International Journal
, vol.
9
, no.
1.5
,
2020
.
14.
A. S.
Shatnawi
,
A.
Jaradat
,
T. B.
Yaseen
,
E.
Taqieddin
,
M.
Al-Ayyoub
, and
D.
Mustafa
, “
An Android malware detection leveraging machine learning
,”
Wireless Communications and Mobile Computing
, vol.
2022
,
2022
.
15.
H. M.
Ünver
and
K.
Bakour
, “
Android malware detection based on image-based features and machine learning techniques
,”
SN Applied Sciences
, vol.
2
, pp.
1
15
,
2020
.
16.
A.
Nicheporuk
,
O.
Savenko
,
A.
Nicheporuk
, and
Y.
Nicheporuk
, “
An Android Malware Detection Method Based on CNN Mixed-Data Model
,” in
ICTERI Workshops
,
2020
, pp.
198
213
.
17.
F.
Akbar
,
M.
Hussain
,
R.
Mumtaz
,
Q.
Riaz
,
A. W. A.
Wahab
, and
K.-H.
Jung
, “
Permissions-based detection of android malware using machine learning
,”
Symmetry
, vol.
14
, no.
4
, p.
718
,
2022
.
18.
L. N.
Vu
and
S.
Jung
, “
AdMat: A CNN-on-matrix approach to Android malware detection and classification
,”
IEEE Access
, vol.
9
, pp.
39680
39694
,
2021
.
19.
J.
Li
,
L.
Sun
,
Q.
Yan
,
Z.
Li
,
W.
Srisa-An
, and
H.
Ye
, “
Significant permission identification for machine-learning-based android malware detection
,”
IEEE Transactions on Industrial Informatics
, vol.
14
, no.
7
, pp.
3216
3225
,
2018
.
20.
W.
Wang
,
Z.
Gao
,
M.
Zhao
,
Y.
Li
,
J.
Liu
, and
X.
Zhang
, “
DroidEnsemble: Detecting Android malicious applications with ensemble of string and structural static features
,”
IEEE Access
, vol.
6
, pp.
31798
31807
,
2018
.
21.
D.
Arp
,
M.
Spreitzenbarth
,
M.
Hubner
,
H.
Gascon
,
K.
Rieck
, and
C.
Siemens
, “
Drebin: Effective and explainable detection of android malware in your pocket
,” in
Ndss
,
2014
, vol.
14
, pp.
23
26
.
22.
D.
Stephen
,
S.
Aswathy
,
P. P.
Sajan
, and
J.
Thomas
, “
Feature Selection/Dimensionality Reduction
,” in
Machine Learning for Healthcare Systems: River Publishers
,
2023
, pp.
169
185
.
23.
B.
Venkatesh
and
J.
Anuradha
, “
A review of feature selection and its methods
,”
Cybernetics and information technologies
, vol.
19
, no.
1
, pp.
3
26
,
2019
.
24.
H. A.
Mahmood
and
S. H.
Hashem
, “
Network intrusion detection system (NIDS) in cloud environment based on hidden Naïve Bayes multiclass classifier
,”
Al-Mustansiriyah Journal of Science
, vol.
28
, no.
2
, pp.
134
142
,
2018
.
25.
A. G.
Karegowda
,
M.
Jayaram
, and
A.
Manjunath
, “
Feature subset selection problem using wrapper approach in supervised learning
,”
International journal of Computer applications
, vol.
1
, no.
7
, pp.
13
17
,
2010
.
26.
E. S.
Alomari
et al, “
Malware detection using deep learning and correlation-based feature selection
,”
Symmetry
, vol.
15
, no.
1
, p.
123
,
2023
.
27.
P.
Chen
,
F.
Li
, and
C.
Wu
, “Research on intrusion detection method based on Pearson correlation coefficient feature selection algorithm,” in
Journal of Physics: Conference Series
,
2021
, vol.
1757
, no.
1
:
IOP Publishing
, p.
012054
.
28.
K. A.
Taher
,
B. M. Y.
Jisan
, and
M. M.
Rahman
, “
Network intrusion detection using supervised machine learning technique with feature selection
,” in
2019 International conference on robotics, electrical and signal processing techniques (ICREST
),
2019
:
IEEE
, pp.
643
646
.
29.
K.
Liu
,
S.
Xu
,
G.
Xu
,
M.
Zhang
,
D.
Sun
, and
H.
Liu
, “
A review of android malware detection approaches based on machine learning
,”
IEEE Access
, vol.
8
, pp.
124579
124607
,
2020
.
30.
F.
Ullah
et al, “
Cyber security threats detection in internet of things using deep learning approach
,”
IEEE access
, vol.
7
, pp.
124379
124389
,
2019
.
31.
Ajay B.
Gadicha
et al
2021
J. Phys.: Conf. Ser.
1963
012141
.
This content is only available via PDF.
You do not currently have access to this content.