Fraud detection is a challenging task that demands a high degree of transparency and accuracy. While they can achieve great performance, traditional machine learning models like neural networks (NN) and ensemble approaches are frequently challenging to understand and comprehend. The field of "explainable AI" (XAI) seeks to provide techniques and instruments that can offer reliable, intelligible justifications on behalf of choices and actions of machine learning models. In this case study, we illustrate how to use XAI to detect financial transaction fraud. We evaluate the result and explain ability of several interpretable machine learning (ML) models. Including rule-based systems, decision trees, and linear models, using a real-world dataset of credit card transactions. Additionally, we show you how to apply other XAI methods as feature significance, local explanations, and acceptances to learn more about the facts and the models. We demonstrate how XAI can improve the fraud detection process by boosting stakeholder confidence and trust, including auditors, regulators, and customers.

1.
M. N.
Ashtiani
,
B.
Raahemi
, in
IEEE Access
,
10
, pp.
72504
72525
(
2022
).
2.
O. A.
Bello
,
A.
Folorunso
,
O. E.
Ejiofor
,
F. Z.
Budale
,
K.
Adebayo
, and
O. A.
Babatunde
,
International Journal of Management Technology Management Technology
,
10
(
1
),
85
108
(
2023
).
3.
A.
Kumar
,
K.
Anand
,
S.
Jha
,
J. Gupta
Data
Management, Analytics and Innovation: Proceedings of ICDMAI 2020,
1
, pp.
107
120
(
2021
).
4.
L.
Pattnaik
,
S.
Satpathy
,
B. K.
Paikaray
,
International Journal of Business Continuity and Risk Management
14
(
1
),
57
76
(
2024
).
5.
L.
Ni
,
J.
Li
,
H.
Xu
,
X.
Wang
,
J.
Zhang
,
IEEE Transactions on Computational Social Systems
,
11
(
2
), pp.
1615
1630
(
2023
).
6.
A.
Ali
,
S. Abd
Razak
,
S. H.
Othman
,
T. A. E.
Eisa
,
A.
Al-Dhaqm
,
M.
Nasser
,
T.
Elhassan
,
Applied Sciences
,
12
(
19
), p.
9637
(
2022
).
7.
A.
Dixit
,
M.
Bhushan
,
S.
Yadav
,
M.
Aggarwal
,
N.
Kalita
,
H.
Singh
, “Impact of Artificial Intelligence and Cyber Security as Advanced Technologies on Bitcoin Industries”, in
4th International Conference on Computation, Automation and Knowledge Management, (ICCAKM)
, pp.
1
6
.
IEEE
, (
2023
).
8.
D.
Bwalya
, and
J.
Phiri
, “
Fraud Detection in Mobile Banking Based on Artificial Intelligence
”, In
Computer Science,
pp.
537
-
554
(
2023
).
9.
N. S.
Alfaiz
., and
S. M.
Fati
,
Electronics,
11
(
4
),
662
(
2022
).
10.
D.
Zhang
,
B.
Bhandari
, and
D.
Black
,
Applied Mathematics
,
11
(
12
),
1275
(
2020
).
11.
C.
Maree
,
J. E.
Modal
and
C. W.
Omlin
,
IEEE Symposium Series on Computational Intelligence (SSCI),
pp.
16
21
. (
2020
).
This content is only available via PDF.
You do not currently have access to this content.