Revolutionizing farming operations, the AI (Artificial Intelligence)-Driven Farm era System uses predictive analytics, geo-integrated monitoring, and smart resource allocation. For optimal efficiency and production, this technology analyzes past data and current patterns using sophisticated AI algorithms, so farmers can make smart choices. The system allows farmers to react quickly to changes and reduce risks by using GIS technology to monitor weather patterns, Monitor soil conditions and crop yields in live updates. In addition, the smart resource allocation function automates input adjustments based on insights derived from data analysis., optimizing the usage of pesticides, water, and fertilizers. This reduces waste and environmental effect. The Streamlit platform's user-friendly design makes it simple for farmers to use the system, giving them the ability to run their farms in a sustainable and efficient manner. The Farm_era System ushers in the next generation of farming with insights powered by artificial intelligence, precise monitoring, and the optimization of resources.

1.
Sivarajah
,
U.
,
Spanaki
,
K.
,
Fakhimi
,
M.
, et al
Innovative Technologies in Agriculture: A Comprehensive Review of AI-Based AgriTech Solutions research
.
Ann Oper Res
308
,
491
524
(
2022
).
2.
Palani
,
S.
,
Swaminathan
,
B.
,
Kotecha
,
K.
,
Vairavasundaram
,
S.
, and
Kumar
,
V.
, "
AI Techniques for Fertilizer Recommendations Using IoT Integration
," in
IEEE Consumer Electronics Magazine
, vol.
12
, no.
2
, pp.
109
117
, 1 March 2023, doi: .
3.
Heurix
,
J.
,
Friedel
,
J.
,
Neubauer
,
T.
,
Wohlmuth
,
M.-L.
, and
Fenz
,
S.
,
Pre-Crop Values and Crop Rotation Matrices Informed by AI and Data Analysis
.
European Journal of Agronomy.
150
.
126949
. .
4.
Rasool
,
T.
,
Shaikh
,
T.
, and
Lone
,
F.
,
Harnessing Machine Learning and Artificial Intelligence for Advancements in Precision Agriculture.
198
.
107119
. .
5.
Sree
,
S.
,
Chukkapalli
,
L.
,
Abdelsalam
,
M.
,
Mittal
,
S.
,
Sandhu
,
R.
,
Gupta
,
M.
,
Joshi
,
K.
,
Joshi
,
A.
, and
carried out research on the use of ontologies and artificial intelligence systems in the collaborative smart farming ecosystem
.
IEEE Access.
8
. .
6.
Khan
,
I. H.
,
Javaid
,
M.
,
Haleem
,
A.
,
Khan
,
I. H.
, and
Suman
,
R.
,
Exploring Potential Applications of Artificial Intelligence in a Agricultural Sector
,
Advanced Agrochem
Volume
2
, Issue
1
,
2023
, Pages
15
30
, ISSN 2773-2371, .
7.
Despoudi
,
S.
,
Karafili
,
E.
,
Spanaki
,
K.
, and
Karafili
,
E.
,
AI applications of data sharing in agriculture 4.0: Developing a Framework for Role-Based Data Access Control in the International Journal of Information Management
59
.
102350
. .
8.
Hassan
,
M.
,
Malhotra
,
K.
, and
Firdaus
,
M.
, “
Application of Artificial Intelligence in IoT Security for Crop Yield Prediction
”,
RRST
, vol.
2
, no.
1
, pp.
136
157
, Oct.
2022
9.
Rauf
,
H. T.
,
Almadhor
,
A.
,
Damaševičius
,
R.
,
Lali
,
M. I. U.
,
Alharbi
,
A.
, and
Alharbi
,
A.
,
Alouffi
,
B.
, "
AI-Driven Framework for Recognition of Guava Plant Diseases through Machine Learning from DSLR Camera Sensor Based High Resolution Imagery
"
Sensors
21
, no.
11
:
3830
. .
10.
Khonturaev
,
S. I.
,
Fazlitdinov
,
M. X. u.
, and
Mamayeva
,
O. I. K.
, “
EMPOWERING EDUCATION: THE IMPACT OF AI IN LEARNING MANAGEMENT SYSTEMS
”,
ERUS
, vol.
2
, no.
11
SPECIAL, pp.
348
350
, Oct.
2023
.
11.
Soyemi
,
A.
,
Pandey
,
S.
,
Vaara
,
S.
, and
Szilvási
,
T.
,
Predicting the melting point of liquid crystals with directed message passing neural networks
.
Liquid Crystals.
51
.
1
15
. .
12.
Aye
,
T.
, and
Shibata
,
S.
,
A Research Investigation into Land-Cover Changes and Deforestation Drivers in the Forest Landscape of Banmauk Township, Situated in the Sagaing Region of Upper Myanmar
,
Published in the Journal of Forest Research
(Volume
28
, Pages
231
239
, DOI: ).
13.
Grigorev
,
V.Y.
,
Grigoreva
,
L.D.
,
Tinkov
,
O.V.
,
Osipov
,
V.N.
,
Khachatryan
,
D.S.
, and
Kolotaev
,
A.V.
,
detector: online application of the evaluating compounds as potential histone deacetylase 6 inhibitors
.
SAR QSAR Environ Res.
2023
Jul-Sep;
34
(
8
):
619
637
.
14.
M. M.
Sardeshmukh
,
Shradha
Kulkarni
,
M. A.
Kumbhalkar
,
S. A.
Choudhari
,
D. V.
Bhise
,
Dr. S. W.
Shaikh
, “
Smart Ai-Based Online Proctoring
”,
Journal of the Gujarat Research Society
, Volume
21
Issue
16
, December
2019
15.
Bagane
,
P.
,
Kothari
,
S.
,
Maheswari
,
V.
,
Kulshrestha
,
S.
,
Asrani
,
Y.
,
Mishra
,
M.
, “
EarlyAdopters' Utilizationof Meta's in the New Open-Source Pretrained Model
.”
Preprints
2023
.
16.
Nasiopoulos
,
D.K.
,
Roumeliotis
,
K.I.
, and
Nasiopoulos
,
D.K.
,
Tselikas
,
N.D.
, “
CropGuard : Empowering Agriculture with the AI driven Plant Disease Detection Chatbot
”,
Int J Intell Syst Appl Eng
, vol.
12
, no.
12s
, pp.
530
537
, Jan.
2024
.
This content is only available via PDF.
You do not currently have access to this content.