Artificial intelligence (AI) has become a potent catalyst in clinical research, completely altering how clinical trials are conducted. The numerous functions that AI plays in clinical trials are explored in this abstract. The cutting-edge innovation in patient recruitment is AI-driven, which quickly and precisely matches patients with trial requirements. This expedites trial efficiency, ensures the correct participants, and cuts recruitment time. Machine learning-driven predictive analytics provide the basis for successful trial outcomes. Predictive analytics can monitor patient data continually to find safety issues and unfavorable events, offering early warnings that allow quick action and enhanced patient safety. As real-world data is incorporated into clinical trials, a new level of understanding is revealed. AI interprets patient histories from electronic health records and directs researchers to prospective medication candidates. AI is bringing innovative medications to market swiftly for patients who need novel therapies with lower costs and better resource allocation. By leveraging AI and personalization in clinical trials, researchers can identify the most suitable participants, optimize treatment strategies, and enhance the likelihood of treatment success, popularly known as the Personalized medicine strategy. A more patient-centric approach is made possible by the merging of Real-World Data with AI. Researchers can learn more about the traits, preferences, and treatment outcomes of patients in the real world. This review provides a look into a more promising and individualized future for medical research by highlighting the multidimensional function of AI in clinical trials.

1.
Kandi
,
V.
, &
Vadakedath
,
S.
Clinical Trials and Clinical Research: A Comprehensive Review
.
Cureus
,
15
(
2
),
e35077
(
2023
).
2.
Secinaro
,
S.
,
Calandra
,
D.
,
Secinaro
,
A.
et al
The role of artificial intelligence in healthcare: a structured literature review
.
BMC Med Inform Decis Mak
21
,
125
(
2021
).
3.
Don
Tracy
, A.E. (
2023
)
Artificial Intelligence has the potential to transform clinical trials, study says
,
Applied Clinical Trials.
Available at: https://www.appliedclinicaltrialsonline.com/view/artificial-intelligence-has-the-potential-to-transform-clinical-trials-study-says (Accessed: 18 January 2024).
4.
Harrer
,
S.
,
Shah
,
P.
,
Antony
,
B.
, &
Hu
,
J.
(n.d.).
Artificial Intelligence for Clinical Trial Design
.
Cell Press.
Retrieved January 18,
2024
, from https://www.cell.com/action/showPdf?pii=S0165-6147%2819%2930130-0
5.
Marsch
,
L. A.
,
Campbell
,
A.
,
Campbell
,
C.
,
Chen
,
C.
,
Ertin
,
E.
,
Ghitza
,
U.
,
Lambert-Harris
,
C.
,
Hassanpour
,
S.
,
Holtyn
,
A. F.
,
Hser
,
Y.
,
Jacobs
,
P.
,
Klausner
,
J. D.
,
Lemley
,
S.
,
Kotz
,
D.
,
Meier
,
A.
,
McLeman
,
B.
,
McNeely
,
J.
,
Mishra
,
V.
,
Mooney
,
L.
, . . .
Young
,
S.
(
2020
).
The application of digital health to the assessment and treatment of substance use disorders: The past, current, and future role of the National Drug Abuse Treatment Clinical Trials Network
.
Journal of Substance Abuse Treatment
,
112
,
4
11
.
6.
Rosa
,
C.
,
Campbell
,
A. N.
,
Miele
,
G. M.
,
Brunner
,
M.
, &
Winstanley
,
E. L.
(
2015
).
Using e-technologies in clinical trials
.
Contemporary Clinical Trials
,
45
,
41
54
.
7.
Naik
,
K.
,
Goyal
,
R. K.
,
Foschini
,
L.
,
Chak
,
C. W.
,
Thielscher
,
C.
,
Zhu
,
H.
,
Lu
,
J.
,
Lehár
,
J.
,
Pacanoswki
,
M. A.
,
Terranova
,
N.
,
Mehta
,
N.
,
Korsbo
,
N.
,
Fakhouri
,
T.
,
Liu
,
Q.
, &
Gobburu
,
J.
Current Status and Future Directions: The Application of Artificial Intelligence/Machine Learning for Precision Medicine
.
Clinical Pharmacology & Therapeutics.
8.
J. Thaddeus
Beck
et al,
Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center
.
JCO Clin Cancer Inform
4
,
50
59
(
2020
).
9.
Ismail
,
A.
,
Al-Zoubi
,
T.
,
Naqa
,
I. E.
, &
Saeed
,
H.
(
2023
).
The role of artificial intelligence in hastening time to recruitment in clinical trials
.
BJR|Open
,
5
(
1
).
10.
Ginghina
,
O.
,
Hudita
,
A.
,
Zamfir
,
M.
,
Spanu
,
A.
,
Mardare
,
M.
,
Bondoc
,
I.
,
Buburuzan
,
L.
,
Georgescu
,
S. E.
,
Costache
,
M.
,
Negrei
,
C.
,
Nitipir
,
C.
, &
Galateanu
,
B.
(
2022
).
Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient’s Stratification
.
Frontiers in oncology
,
12
,
856575
.
11.
Miller
,
M.I.
,
Shih
,
L.C.
&
Kolachalama
,
V.B.
Machine Learning in Clinical Trials: A Primer with Applications to Neurology
.
Neurotherapeutics
20, 1066–1080
(
2023
).
12.
Fergus
,
P.
,
Chalmers
,
C.
,
Henderson
,
W.
,
Roberts
,
D.
, &
Waraich
,
A.
(
2022
).
Pressure Ulcer Categorisation using Deep Learning: A Clinical Trial to Evaluate Model Performance. ArXiv. abs/2203.06248
13.
Lamba
,
D.
,
Hsu
,
W. H.
, &
Alsadhan
,
M.
(
2020
).
Predictive analytics and machine learning for medical informatics: A survey of tasks and techniques
.
Machine Learning, Big Data, and IoT for Medical Informatics
,
1
35
.
14.
Manlhiot
,
C.
(
2018
).
Machine learning for predictive analytics in medicine: Real opportunity or overblown hype?
European Heart Journal - Cardiovascular Imaging
,
19
(
7
),
727
728
.
15.
AI-driven patient retention and engagement for clinical trials | Amazon Web Services. (2020, August 4). Amazon Web Services. https://aws.amazon.com/blogs/industries/ai-driven-patient-retention-and-engagement-for-clinical-trials/
16.
Nadarzynski
,
T.
,
Miles
,
O.
,
Cowie
,
A.
, &
Ridge
,
D.
(
2019
).
Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study
.
DIGITAL HEALTH.
17.
The Role of Digital Transformation in Patient Engagement, Recruitment, & Retention. (2023, July 21). Pubs - Clinical Research News Online. https://www.clinicalresearchnewsonline.com/news/2023/07/21/the-role-of-digital-transformation-in-patient-engagement-recruitment-retention
18.
Alowais
,
S.A.
,
Alghamdi
,
S.S.
,
Alsuhebany
,
N.
et al.
Revolutionizing healthcare: the role of artificial intelligence in clinical practice
.
BMC Med Educ
23
,
689
(
2023
).
19.
Leimeister
,
J. M.
, &
Krcmar
,
H.
(
2005
).
Evaluation of a Systematic Design for a Virtual Patient Community
.
Journal of Computer-Mediated Communication
,
10
(
4
).
20.
Bermejo-Caja
,
C.
,
Koatz
,
D.
,
Orrego
,
C.
et al.
Acceptability and feasibility of a virtual community of practice to primary care professionals regarding patient empowerment: a qualitative pilot study
.
BMC Health Serv Res
19, 403
(
2019
).
21.
Wang
,
Y.
,
Carter
,
B. Z.
,
Li
,
Z.
, &
Huang
,
X.
(
2022
).
Application of machine learning methods in clinical trials for precision medicine
.
JAMIA Open
,
5
(
1
).
22.
Pallmann
,
P.
,
Bedding
,
A.W.
,
Choodari-Oskooei
,
B.
et al.
Adaptive designs in clinical trials: why use them, and how to run and report them
.
BMC Med
16
,
29
(
2018
).
23.
Berger
,
V.
,
Bour
,
L.
,
Carter
,
K.
et al.
A roadmap to using randomization in clinical trials
.
BMC Med Res Methodol
21
,
168
(
2021
).
24.
Zhou
,
Q.
,
Chen
,
Z.
,
Cao
,
Y.
, &
Peng
,
S.
(
2021
).
Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: A systematic review
.
Npj Digital Medicine
,
4
(
1
),
1
12
.
25.
Cheng
,
Y.
, &
Berry
,
D. A.
(
2007
).
Optimal adaptive randomized designs for clinical trials
.
Biometrika
,
94
(
3
),
673
689
.
26.
Lam
,
T. Y.
,
Cheung
,
M. F.
,
Munro
,
Y. L.
,
Lim
,
K. M.
,
Shung
,
D.
, &
Sung
,
J. J.
(
2022
).
Randomized Controlled trials of Artificial intelligence in Clinical practice: Systematic review
.
Journal of Medical Internet Research
,
24
(
8
),
e37188
.
This content is only available via PDF.
You do not currently have access to this content.