The growth of NAFLD has become an issue in public health because it can advance to more dangerous illnesses like cirrhosis and NASH. Detecting NAFLD on is vital which is why this project wants to explore the application of machine learning algorithms, for early diagnosis. Currently conventional diagnostic methods heavily rely on costly procedures such, as liver biopsies, which are not practical or sustainable considering the widespread prevalence of NAFLD. Currently traditional diagnostic methods heavily rely on costly procedures such, as liver biopsies, which are not practical or sustainable given the widespread occurrence of NAFLD. Harnessing the power of machine learning, with its potential to efficiently process huge volumes of data, predictive models can be methodically designed to reliably diagnose the existence of NAFLD based simply on clinical information. These advanced models have the ability to disclose detailed patterns and biomarkers closely connected with NAFLD by learning from varied patient cohorts. Consequently, this method delivers a non-invasive diagnostic solution with unparalleled levels of sensitivity and specificity. The study at hand exploited a big dataset comprising of a staggering 2024 observations and examinations obtained from 17549 meticulously conducted questionnaires. Out of the countless qualities accessible, a meticulous selection process led to the analysis of six specific attributes. These variables underwent different modifications, and the entire model development process occurred within the powerful framework of Google Collab. The results acquired were nothing short of remarkable; the suggested model displayed an unsurpassed accuracy rate of a breathtaking 100% in predicting the occurrence of NAFLD. The incorporation of machine learning approaches into the area of NAFLD detection marks a significant milestone in current medicine. This innovative development highlights the vital necessity of early detection and gives a realistic answer to the challenging diagnostic problems inherent in the management of NAFLD. The potential ramifications for public health and the healthcare sector as a whole cannot be emphasized, exposing machine learning’s revolutionary role in increasing healthcare outcomes and greatly decreasing the social burden posed by NAFLD. In essence, this represents a great advance towards healthier individuals and a more robust society.

1.
Estes
,
C.
,
Razavi
,
H.
,
Loomba
,
R.
,
Younossi
,
Z.
, &
Sanyal
,
A. J.
(
2018
).
The NAFLD Fibrosis Score: A Non-Invasive System That Identifies Liver Fibrosis in Patients With NAFLD
.
Hepatology
,
68
(
3
),
865
875
.
2.
Estakhri
,
R.
,
Karimi
,
A.
, &
Sani
,
Z. A.
(
2020
).
Deep Learning-Based Non-Alcoholic Fatty Liver Disease (NAFLD) Detection Using Ultrasound Images
.
Journal of Medical Signals and Sensors
,
10
(
2
),
128
133
.
3.
Dasarathy
,
S.
,
Dasarathy
,
J.
,
Khiyami
,
A.
,
Yerian
,
L.
,
Hawkins
,
C.
, &
Sargent
,
R.
(
2019
).
Double-blind randomized placebo-controlled clinical trial of omega 3 fatty acids for the treatment of non-alcoholic steatohepatitis (NASH
).
Journal of Hepatology
,
70(Supplement
1
),
e534
.
4.
Zhu
,
G.
,
Zhu
,
H.
,
Guan
,
Y.
,
Zhang
,
L.
, &
Yang
,
S.
(
2018
).
A random forest approach for identifying differential DNA methylation in hepatocellular carcinoma tissues
.
Oncology Reports
,
40
(
4
),
2071
2079
.
5.
Al-Bahrani
,
R.
,
Abduallah
,
M.
, &
Al-Rawas
,
M.
(
2019
).
A Machine Learning Approach for Non-Alcoholic Fatty Liver Disease (NAFLD) Detection and Classification Using Clinical, Imaging, and Histopathological Data
.
Medical Journal of Oman
,
34
(
1
),
39
46
.
6.
Cholankeril
,
G.
,
Patel
,
R.
,
Khurana
,
S.
, &
Satapathy
,
S. K.
(
2019
).
Hepatocellular carcinoma in non-alcoholic steatohepatitis: Current knowledge and implications for management
.
World Journal of Hepatology
,
11
(
6
),
409
420
.
7.
Younossi
,
Z. M.
,
Koenig
,
A. B.
,
Abdelatif
,
D.
,
Fazel
,
Y.
,
Henry
,
L.
, &
Wymer
,
M.
(
2016
).
Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes
.
Hepatology
,
64
(
1
),
73
-
84
.
8.
Anstee
,
Q. M.
, &
McPherson
,
S.
(
2016
).
Role of genetics in NAFLD
.
Hepatology International
,
10
(
5
),
857
865
.
9.
Singh
,
S.
,
Allen
,
A. M.
,
Wang
,
Z.
, &
Prokop
,
L. J.
(
2015
).
Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies
.
Clinical Gastroenterology and Hepatology
,
13
(
4
),
643
-
654
.e9.
10.
Siddiqui
,
M. S.
, &
Harrison
,
S. A.
(
2016
).
Nonalcoholic fatty liver disease and cardiovascular risk
.
Current Gastroenterology Reports
,
18
(
6
),
1
10
.
11.
Kumar
,
R.
,
Priyadarshi
,
R. N.
, &
Anand
,
U.
(
2019
).
A review on the detection and prediction of non-alcoholic fatty liver disease
.
Journal of Medical Imaging and Health Informatics
,
9
(
7
),
1410
1425
.
12.
Sanyal
,
A. J.
,
Brunt
,
E. M.
,
Kleiner
,
D. E.
,
Kowdley
,
K. V.
,
Chalasani
,
N.
, &
Lavine
,
J. E.
(
2011
).
Endpoints and clinical trial design for nonalcoholic steatohepatitis
.
Hepatology
,
54
(
1
),
344
353
.
13.
Kawamoto
,
C.
,
Fritscher
,
L. G.
,
Oliveira
,
L. S.
, &
Frère
,
A. F.
(
2018
).
MRI for the diagnosis of nonalcoholic fatty liver disease: a review of the literature
.
BioMed Research International
, 2018.
14.
Hagström
,
H.
,
Nasr
,
P.
,
Ekstedt
,
M.
,
Hammar
,
U.
,
Stål
,
P.
, &
Hultcrantz
,
R.
(
2017
).
Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD
.
Journal of Hepatology
,
67
(
6
),
1265
1273
.
15.
Wong
,
V. W.
,
Adams
,
L. A.
,
de Lédinghen
,
V.
,
Wong
,
G. L.
,
Sookoian
,
S.
, &
Non-invasive Fibrosis Monitoring study group
. (
2018
).
Noninvasive biomarkers in NAFLD and NASH—current progress and future promise
.
Nature Reviews Gastroenterology & Hepatology
,
15
(
8
),
461
478
.
16.
Non-alcohol fatty liver disease (NAFLD) dataset by UTKARSH SINGH on Kaggle
. Link provided here as following- https://www.kaggle.com/datasets/utkarshx27/non-alcohol-fatty-liver-disease
17.
Yip
,
T. F.
,
Ma
,
A. J.
,
Wong
,
V. S.
,
Tse
,
Y. K.
,
Chan
,
H. Y.
,
Yuen
,
P. C.
, &
Wong
,
G. H.
(
2017
).
Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population
.
Alimentary pharmacology & therapeutics
,
46
(
4
),
447
456
.
18.
Perveen
,
S.
,
Shahbaz
,
M.
,
Keshavjee
,
K.
, &
Guergachi
,
A.
(
2018
).
A systematic machine learning based approach for the diagnosis of non-alcoholic fatty liver disease risk and progression
.
Scientific reports
,
8
(
1
),
2112
.
19.
Liu
,
Y. X.
,
Liu
,
X.
,
Cen
,
C.
,
Li
,
X.
,
Liu
,
J. M.
,
Ming
,
Z. Y.
, … &
Zheng
,
S. S.
(
2021
).
Comparison and development of advanced machine learning tools to predict nonalcoholic fatty liver disease: An extended study
.
Hepatobiliary & Pancreatic Diseases International
,
20
(
5
),
409
415
.
20.
Guarneros-Nolasco
,
L. R.
,
Alor-Hernández
,
G.
,
Prieto-Avalos
,
G.
, &
Sánchez-Cervantes
,
J. L.
(
2023
).
Early Identification of Risk Factors in Non-Alcoholic Fatty Liver Disease (NAFLD) Using Machine Learning
.
Mathematics
,
11
(
13
),
3026
.
21.
Pagar
,
K.
,
Jain
,
T.
,
Kumar
,
H.
,
Bhardwaj
,
A.
, &
Handa
,
R
,
Medical Appliances Energy Consumption Prediction Using Various Machine Learning Algorithms
.
Blockchain and Deep Learning for Smart Healthcare
, pp.
353
377
,
2023
.
22.
Fialoke
,
S.
,
Malarstig
,
A.
,
Miller
,
M. R.
, &
Dumitriu
,
A.
(
2018
).
Application of machine learning methods to predict non-alcoholic steatohepatitis (NASH) in non-alcoholic fatty liver (NAFL) patients
.
In AMIA Annual Symposium Proceedings
(Vol.
2018
, p.
430
). American Medical Informatics Association.
23.
Ma
,
H.
,
Xu
,
C. F.
,
Shen
,
Z.
,
Yu
,
C. H.
, &
Li
,
Y. M.
(
2018
).
Application of machine learning techniques for clinical predictive modeling: a cross-sectional study on nonalcoholic fatty liver disease in China
.
BioMed research international
, 2018.
24.
Wu
,
C. C.
,
Yeh
,
W. C.
,
Hsu
,
W. D.
,
Islam
,
M. M.
,
Nguyen
,
P. A. A.
,
Poly
,
T. N.
, … &
Li
,
Y. C. J.
(
2019
).
Prediction of fatty liver disease using machine learning algorithms
.
Computer methods and programs in biomedicine
,
170
,
23
29
.
25.
Wong
,
G. L. H.
,
Yuen
,
P. C.
,
Ma
,
A. J.
,
Chan
,
A. W. H.
,
Leung
,
H. H. W.
, &
Wong
,
V. W. S.
(
2021
).
Artificial intelligence in prediction of non-alcoholic fatty liver disease and fibrosis
.
Journal of gastroenterology and hepatology
,
36
(
3
),
543
550
.
26.
Gummadi
,
S.
,
Patel
,
N.
,
Naringrekar
,
H.
,
Needleman
,
L.
,
Lyshchik
,
A.
,
O’Kane
,
P.
, … &
Eisenbrey
,
J. R.
(
2020
).
Automated machine learning in the sonographic diagnosis of non-alcoholic fatty liver disease
.
ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY
,
4
(
3
),
176
182
.
27.
Popa
,
S. L.
,
Ismaiel
,
A.
,
Cristina
,
P.
,
Cristina
,
M.
,
Chiarioni
,
G.
,
David
,
L.
, &
Dumitrascu
,
D. L.
(
2021
).
Non-alcoholic fatty liver disease: implementing complete automated diagnosis and staging. a systematic review
.
Diagnostics
,
11
(
6
),
1078
.
28.
Canbay
,
A.
,
Kälsch
,
J.
,
Neumann
,
U.
,
Rau
,
M.
,
Hohenester
,
S.
,
Baba
,
H. A.
, … &
Sowa
,
J. P.
(
2019
).
Non-invasive assessment of NAFLD as systemic disease—a machine learning perspective
.
PloS one
,
14
(
3), e0214436
.
29.
Pei
,
X.
,
Deng
,
Q.
,
Liu
,
Z.
,
Yan
,
X.
, &
Sun
,
W.
(
2021
).
Machine learning algorithms for predicting fatty liver disease
.
Annals of Nutrition and Metabolism
,
77
(
1
),
38
45
.
30.
Ito
,
T.
,
Morooka
,
H.
,
Takahashi
,
H.
,
Fujii
,
H.
,
Iwaki
,
M.
,
Hayashi
,
H.
, … &
Japan Study Group of Nonalcoholic Fatty Liver Disease (JSG-NAFLD)
. (
2023
).
Identification of clinical phenotypes associated with poor prognosis in patients with nonalcoholic fatty liver disease via unsupervised machine learning
.
Journal of Gastroenterology and Hepatology
,
38
(
10
),
1832
1839
.
31.
Aslam
,
M. H.
,
Hussain
,
S. F.
, &
Ali
,
R. H.
(
2022
, November).
Predictive analysis on severity of Non-Alcoholic Fatty Liver Disease (NAFLD) using Machine Learning Algorithms
.
In 2022 17th International Conference on Emerging Technologies (ICET)
(pp.
95
100
).
IEEE
.
32.
Chang
,
D.
,
Truong
,
E.
,
Mena
,
E. A.
,
Pacheco
,
F.
,
Wong
,
M.
,
Guindi
,
M.
, … &
Noureddin
,
M.
(
2023
).
Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and NAFLD-related cirrhosis
.
Hepatology.
33.
Nazari
,
E.
,
Khalili-Tanha
,
G.
,
Asadnia
,
A.
,
Pourali
,
G.
,
Maftooh
,
M.
,
Khazaei
,
M.
, … &
Avan
,
A.
(
2023
).
Bioinformatics analysis and machine learning approach applied to the identification of novel key genes involved in non-alcoholic fatty liver disease
.
Scientific Reports
,
13
(
1
),
20489
.
34.
Bajpai
,
M.
,
Jain
,
T.
,
Bhardwaj
,
A.
,
Kumar
,
H.
, &
Sharma
,
R
, Air Quality Index Prediction Using Various Machine Learning Algorithms. In
6G Enabled Fog Computing in IoT: Applications and Opportunities
Cham
:
Springer Nature Switzerland
, pp.
91
110
,
2023
.
35.
Ghandian
,
S.
,
Thapa
,
R.
,
Garikipati
,
A.
,
Barnes
,
G.
,
Green-Saxena
,
A.
,
Calvert
,
J.
, … &
Das
,
R.
(
2022
).
Machine learning to predict progression of non-alcoholic fatty liver to non-alcoholic steatohepatitis or fibrosis
.
JGH Open
,
6
(
3
),
196
204
.
This content is only available via PDF.
You do not currently have access to this content.