Indonesia stands as the world’s largest exporter of kapok fiber (Ceiba Pentandra), with a volume reaching 28,400 tons of fiber, covering for 85% of the global demand for kapok fiber. Kapok, scientifically known as Ceiba Pentandra, resides within the realm of natural fibers and is classified as a plant-derived fiber. In comparison to other natural fibers, kapok fiber is notably fine, exceptionally lightweight, and possesses notable interstitial cavities. The fineness of kapok fiber is merely half that of cotton fiber, while its cavities measure approximately 94-95% in size. Endowed with antibacterial properties, these attributes render kapok fiber a fitting material for various padding applications. Within the realm of padding applications, several factors exert direct influence over the heat insulation capacity of the padding, and one such factor pertains to the presence of air within the padding itself. The greater the ratio of air to fiber within the padding, the more effective its ability to insulate against heat. One avenue for enhancing this aspect entails the amalgamation of distinct materials and specific structural configurations capable of engendering air pockets. This research aims to optimize the internal air space through a core pocket structure, utilizing kapok fiber and polypropylene fiber materials. The fabrication of the padding is achieved via thermal bonding techniques, with subsequent assessment of thermal conductivity undertaken using the Atlas Fabric Touch Tester instrument. The attributes of the core pocket nonwoven padding are subsequently compared to those of conventional nonwoven materials. The core pocket nonwoven padding demonstrates superior tensile strength and enhanced thermal conductivity in contrast to conventional nonwoven materials. This outcome is attributable to the more robust structural configuration inherent to the core pocket nonwoven padding, which facilitates more resilient interconnections between its components.

1.
M. D.
Sukardan
,
D.
Natawijaya
,
P.
Prettyanti
,
Cahyadi
and
E.
Novarini
,
Arena Tekstil
31
(
2
).
51
62
(
2017
).
2.
M.
Pavelek
and
T.
Adamova
,
Materials
12
(
12
),
1
17
(
2019
).
3.
SNI ISO 5084:2010
(
Tekstil - Cara uji tebal tekstil dan produk tekstil)
4.
SNI ISO 3801:2010
(
Tekstil - kain tenun - cara uji berat kain per satuan panjang dan berat kain per satuan luas)
5.
Rahmatullah
,
Selpiana
,
E. O.
Sari
,
R. W.
Putri
,
U.
Waluyo
and
T.
Andrianto
’‘Pengaruh Konsentrasi NaOH Terhadap Kadar Selulosa pada Proses Delignifikasi dari Serat Kapuk sebagai Bahan Baku Biodegradable Plastic Berbasis Selulosa Asetat”,
Prosiding AVoER XII
, edited by
Wienty
Triyuly
(
Unisri, Palembang
,
Indonesia
,
2020
) pp.
305
308
.
6.
S. M.
Landage
,
A. I.
Wasif
and
P. G.
Tharewal
,
IJARIE
2
(
6
),
71
89
(
2013
).
7.
M.
Patel
and
D.
Bhrambhatt
,
Nonwoven Technology for Unconventional Fabric
(
M.S. University
,
Vadodara
,
2008
) pp.
1
54
.
8.
L.
Fambri
and
L.
Lutterotti
, “
Effect of Processing and Orientation on Structural and Mechanical Properties of Polypropylene Products
” in
Polypropylene
edited by
Weiyu
Wang
and
Yiming
Zeng
(
Intechopen
,
London
,
2020
) pp.
91
106
.
9.
P. K.
Roy
,
T.
Malik
and
T. K.
Sinha
, “
Thermal bonded nonwoven
” (
Faculties SVITS
,
Indore
,
2011
)
10.
Z.
Li
,
C.
Reimer
,
M.
Picard
,
A. K.
Mohanty
and
M.
Misra
,
Front Mater
7
(
2020
).
11.
A.
Dahiya
,
M. G.
Kamath
,
R. R.
Hegde
,
X.
Gao
and
Y.
Huang
,
Material Science and Engineering
,
554
, (
2004
).
12.
T.
Karthik
,
P.
Karan
. and
R.
Rathinamoorthy
,
Non-woven: Process, Structure, Properties and Applications
(
Woodhead Publishing
,
Sawston
,
2016
) pp.
6
36
.
This content is only available via PDF.
You do not currently have access to this content.