Deneutrosophication process is a process transforming from neutrosophic values to crisp output values. It is the final step for the operations within a neutrosophic set and system. Neutrosophic set theories are a generalization of intuitionistic fuzzy and fuzzy set theories, focusing on truth, indeterminacy, and falsity memberships independently. However, it isn’t easy to generate a geometrical model such as a B-spline surface by using neutrosophic set theory through the deneutrosophication process. Therefore, this paper used an average of triangular footprint method in the deneutrosophication process to construct the neutrosophic B-spline surface (NB-sS) models by using approximation methods. Before generating the model, the neutrosophic control net (NCN) must first be introduced using the deneutrosophication process. After that, the NCN will be blended with the B-spline basis function to generate the NB-sS approximation model. Next, some numerical examples of NB-sS will be provided. Finally, the deneutrosophication of NB-sS approximation models will be visualized, and its algorithm will be shown.

1.
Smarandache
,
F.
A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic
,
American Research Press
,
Rehoboth, United States
.
2.
Smarandache
,
F.
2005
.
Neutrosophic Set - A Generalization of the Intuitionistic Fuzzy Sets
.
International Journal of Pure and Applied Mathematics.
24
(
3
):
287
297
. DOI:
3.
Zadeh
,
L.A.
1965
.
Fuzzy Sets. Information and Control.
8
(
3
):
338
353
. DOI: doi:
4.
Atanassov
,
K.T.
1986
.
Intuitionistic Fuzzy Sets
.
Fuzzy Sets Syst.
20
(
1
):
87
96
. DOI:
5.
Mandal
,
K.
2020
.
On Deneutrosophication
.
Neutrosophic Sets and Systems.
38
:
409
422
. Doi: .
6.
Wang
,
Smarandache
,
Zhang
, and
Sunderraman
.
2008
.
Interval neutrosophic sets and logic Interval Neutrosophic Set sand Logic: Theory and Applications in Computing
.
Phoenix, Arizona: Hexis.
7.
Chakraborty
,
A.
,
Mondal
,
S.
and
Broumi
,
S.
2019
.
De-Neutrosophication Technique of Pentagonal Neutrosophic Number and Application in Minimal Spanning Tree
.
Neutrosophic Sets and Systems.
29
:
1
17
.
8.
Awang
,
A.
,
Aizam
,
N.A.H
and
Abdullah
,
L.
2019
.
An Integrated Decision-Making Method Based on Neutrosophic Numbers for Investigating Factors of Coastal Erosion
.
Symmetry.
11
:
328
.
9.
Broumi
,
S.
,
Nagarajan
,
D.
,
Bakali
,
A.
,
Talea
,
M.
,
Smarandache
,
F.
and
Lathamaheswari
,
M.
2019
.
The shortest path problem in interval valued trapezoidal and triangular neutrosophic environment
.
Complex and Intelligent Systems.
5
:
391
402
.
10.
Chakraborty
,
A.
,
Mondal
,
S.
,
Ahmadian
,
A.
,
Senu
,
N.
,
Alam
,
S.
, &
Salahshour
,
S.
2018
.
Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their applications
.
Symmetry.
10
:
327
. .
11.
Wahab
,
A. F.
,
Ali
,
J. M.
,
Majid
,
A. A.
and M
Tap
,
A. O.
2004
.
Fuzzy Set in Geometric Modeling, Proceedings International Conference on Computer Graphics
,
Imaging and Visualization, CGIV
, Penang.
227
232
.
12.
Wahab
,
A. F.
,
Ali
,
J. M.
and
Majid
,
A. A.
2009
.
Fuzzy geometric modeling
.
Sixth International Conference on Computer Graphics, Imaging and Visualization.
276
280
.
13.
Zulkifly
,
M. I. E.
(
2018
).
Pemodelan Geometri Kabur Intusinistik Untuk Visualisasi Masalah Data Kompleks
[Doctoral thesis,
Universiti Malaysia Terengganu
].
14.
Zakaria
,
R.
,
Wahab
,
A. F.
and
Jamaludin Md
Ali
, J. M.
2010
.
Offline handwritten signature verification using Alpha Cut of Triangular Fuzzy Number (TFN
).
Malaysian Journal of Fundamental and Applied Sciences.
6
(
2
):
148
153
. DOI:
15.
Zakaria
,
R.
,
Wahab
,
A. F.
and
Gobithaasan
.
2014
.
Normal Type-2 Fuzzy Interpolating B-Spline Curve
.
Proceedings of the 21st National Symposium on Mathematical Sciences (SKSM21)
,
1605
:
476
481
. Doi:
16.
Zakaria
,
Rozaimi
&
Wahab
,
Abd
&
Gobithaasan
,
R.U.
(
2013
).
Perfectly normal type-2 fuzzy interpolation B- spline curve
.
Applied Mathematical Sciences.
7
. Doi: .
17.
Blaga
,
P.
and
Bede
,
B.
2006
.
Approximation by fuzzy B-spline series
,
Journal of Applied Mathematics and Computing.
20
(
1–2
):
157
169
.
18.
Saga
,
S.
and
Makino
,
H.
1993
.
Fuzzy spline interpolation and its application to on-line freehand curve identification
,
Proc. 2nd IEEE Internat. Conf. on Fuzzy Systems.
1183
1190
.
19.
Zakaria
R.
,
Wahab
AF
and
Gobithaasan
R.
,
2016
.
The Series of Fuzzified Fuzzy Bezier Curve
,
Jurnal Teknologi.
78
:
103
107
. DOI:
20.
Tas
,
F.
and
Topal
,
S.
2017
. Bezier Curve Modeling for Neutrosophic Data Problem.
Neutrosophic set and system
.
University of New Mexico
.
21.
Topal
,
S.
and
Tas
,
F.
2018
.
Bézier Surface Modeling for Neutrosophic Data Problems
.
Neutrosophic set and system University of New Mexico.
19
:
19
23
.
22.
Rosli
,
S. N. I.
, and
Zulkifly
,
M. I. E.
2023
.
A Neutrosophic Approach for B-Spline Curve by Using Interpolation Method
.
Neutrosophic Systems with Applications.
9
:
29
40
. DOI: .
23.
Rosli
,
S. N. I.
, and
Zulkifly
,
M. I. E.
2023
.
Neutrosophic Bicubic B-spline Surface Interpolation Model for Uncertainty Data
.
Neutrosophic Systems with Applications.
10
:
25
34
. DOI: .
24.
Rosli
,
S. N. I.
, and
Zulkifly
,
M. I. E.
2023
.
3-Dimensional Quartic Bézier Curve Approximation Model by Using Neutrosophic Approach
.
Neutrosophic Systems with Applications.
11
:
11
21
. DOI: .
25.
Rosli
,
S. N. I.
, &
Zulkifly
,
M. I. E.
2023
.
Neutrosophic Bicubic Bezier Surface Approximation Model for Uncertainty Data
.
MATEMATIKA
,
39
(
3
):
281
291
. DOI:
26.
Rosli
,
S. N. I.
&
Zulkifly
,
M. I. E.
2024
.
Interval Neutrosophic Cubic Bézier Curve Approximation Model for Complex Data
.
Malaysian Journal of Fundamental and Applied Sciences (MJFAS)
,
20
(
2
):
336
346
.
27.
Sumathi
,
I. R.
and
Antony
C.
2019
.
New approach on differential equation via trapezoidal neutrosophic number
.
Complex & Intelligent Systems
,
5
:
417
424
. DOI:
28.
Piegl
,
L.
and
Tiller
,
W.
The NURBS Book
(
Springer-Verlag Berlin Heidelberg
,
Germany
),
1995
.
29.
Rosli
,
S. N. I.
, &
Zulkifly
,
M. I. E.
2024
.
Neutrosophic B-spline Surface Approximation Model for 3- Dimensional Data Collection
.
Neutrosophic Sets and Systems
,
63
:
95
104
. https://fs.unm.edu/nss8/index.php/111/article/view/3879
30.
Wahab
,
A. F.
,
Ali
,
J. M.
,
Majid
,
A. A.
and
Tap
,
A. O. M.
2010
.
Penyelesaian Masalah Data Ketakpastian Menggunakan Splin-B Kabur
,
Sains Malaysiana.
39
(
4
):
661
670
This content is only available via PDF.
You do not currently have access to this content.