In this paper we study the representation of distribution functions of random variables by one-sided fractional Riemann-Liouville integrals. Using the apparatus of classical and fractional analysis, we obtain simple sufficient conditions imposed on fractional analogs of density functions and new properties of the latter, which essentially differ from the usual properties of ordinary density functions. Characteristic features of functions whose fractional integrals correctly represent distribution functions are described.
Topics
Fractional calculus
REFERENCES
1.
S. G.
Samko
and A.A.
Kilbas
and O.I.
Marichev
, Fractional Integrals and Derivatives. Theory and Applications
. Gordon and Breach. Sci. Publ
., N.York-London
, (1993
), 1012
pp.2.
T.
Mamatov
, Operators of Volterra convolution type in generalized Hölder spaces
(Poincare Journal of Analysis and Applications
, 7
(2
), 2020
), pp. 275
–288
.3.
T.
Mamatov
and N.
Mustafoev
, Operators of Volterra convolution type in weighted generalized Hölder space
(Poincare Journal of Analysis and Applications
, 10
(1
), 2023
), pp. 135
–154
.4.
Zh.
Wang
and H.
Wu
and Q.
Xue
, Borderline Weighted Estimates for Commentators of Fractional Integrals
(Anal. Theory Appl.
, 37
(3
), 2021
), pp. 404
-425
. DOI: 10.4208/ata.2021.lu80.085.
H. A. H.
Salem
and M.
Cichon
, Analysis of Tempered Fractional Calculus in Hölder and Orliez Spaces
(Symmetry
, 14
(1581
), 2022
), pp. 1
–25
.6.
A.
Karapetyants
and S.
Samko
, Variable order fractional integrals in variable generalized Hölder spaces of holomorphic functions
(Analysis and Mathematical Physics
, 11
(4
), 2021
), pp. 156
–164
7.
R.
Gorenflo
and F.
Mainardi
F, Fractional calculus: Integral and differential equations of fractional order. (Fractals and fractional calculus in continuum, Wien
: Springer
, 1997
), pp. 223
–276
.8.
P. L.
Butzer
and U.
Westphal
, An introduction to fractional calculus. (Application of fractional calculus in physics
. Singapore
: World Scientific
, 2000
), pp. 1
–87
.9.
S.
Das
, Functional fractional calculus for system identification and controls
. Berlin
: Springer
, (2008
), 239
pp.10.
Khuzhayorov
B.Kh.
, Dzhiyanov
T.O.
, Mamatov
Sh.S.
, Shukurov
V.S.
Mathematical Model of Substance Transport in Two-Zone Porous Media
. AIP Conference Proceedings
, 2022
, 2637
, 11.
Khuzhayorov,
A.
Usmonov
, N.M.A. Nik
Long
, B.
Fayziev
, Anomalous solute transport in a cylindrical two-zone medium with fractal structure
// Applied Sciences (Switzerland)
, 2020
. 10
(15
), 5349
. DOI:12.
J.M.
Makhmudov
, A.I.
Usmonov
, J.B.
Kuljanov
, Problem of anomalous filtration in nonhomogeneous porous medium
. International Journal of Applied Mathematics.
Volume 36
No. 2
2023
, 189
–203
. ISSN: 1311-1728.13.
Makhmudov
J.M.
, Usmonov
A.I.
, Kaytarov
Z.D.
, Sultonov
B.
. Numerical solution of the problem of anomalous solute transport in a two-dimensional nonhomogeneous porous medium
, AIP Conference Proceedings
, 2637
, 040017
(2022
). 14.
Makhmudov
J.M.
, Usmonov
A.I.
, Kuljanov
J.B.
The Problem of Filtration and Solute Transport in a Two-Zone Porous Medium
. AIP Conference Proceedings
, 2637
, 040020
(2022
). 15.
B. Kh.
Khuzhayorov
, K. K.
Viswanathan
, F. B.
Kholliev
, A.I.
Usmonov
, Computation
, Vol. 10
, No. 11
, 2023
, 229
. Doi:.16.
Khuzhayorov
B.K.
, Djiyanov
T.O.
, Yuldashev
T.R.
Anomalous Nonisothermal Transfer of a Substance in an Inhomogeneous Porous Medium
. Journal of Engineering Physics and Thermophysics
, 92
(1
), 2019
, Pp. 104
–113
17.
Khuzhayorov
B.K.
, Mustafokulov
J.A.
, Dzhiyanov
T.O.
, Zokirov
M.S.
Solute Transport with Non-Equilibrium Adsorption in a Non-Homogeneous Porous Medium
. WSEAS Transactions on Fluid Mechanics
, 17
, 2022
, Pp. 181
–188
18.
Khuzhayorov
B.K.
, Dzhiyanov
T.O.
, Eshdavlatov
Z.Z.
Numerical Investigation of Solute Transport in A Non-Homogeneous Porous Medium Using Nonlinear Kinetics
. International Journal of Mechanical Engineering and Robotics Research
, 11
(2
), 2022
, Pp. 79
–85
.19.
G.
Jumarie
, Fractional Euler’s integral of first and second kinds. Application to fractional Hermit’s polynomials and to probability density of fractional order
(Journal of Applied Mathematics & Informatics.
28
(1-2
), 2010
), pp. 257
–273
.20.
G.
Jumarie
, Probability calculus of fractional order and fractional Taylor’s series application to Fokker– Planck equation and information of non-random functions
(Chaos, Solitons & Fractals.
40
(3
), 2009
), pp. 1428
–1448
.21.
G.
Jumarie
. Path probability of random fractional systems defined by white noises in coarse-grained time. Applications of fractional entropy
(Fractional Differential Calculus.
1
(1
), 2011
), pp. 47
–87
.22.
J. A. Tenreiro
Machado
, Fractional coin and fractional derivatives
(Abstract and Applied Analysis
, 1
, 2013
), pp. 74
–89
.23.
H.
Mostafaei
and P. A.
Ghotbi
, Fractional probability measure and its properties
(Journal of Sciences, Islamic Republic of Iran
, 21
(3
), 2010
), pp. 259
–264
.24.
H.
Akhadkulov
; Z.
Eshkuvatov
; U. A. M.
Roslan
; S.
Akhatkulov
On the solutions of fractional hybrid differential equations
// AIP Conference Proceedings
2746
, 060009
(2023
),
This content is only available via PDF.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.