5G (fifth generation) base station deployment while considering cost, signal coverage, the availability of varied demographic areas with varying user density and expected transmission speeds. Increasing traffic needs in varying demographic regions necessitate the installation of various sizes, number, and capacity 5G base stations, which will have an impact on the 5G network’s energy usage. A two-stage optimization approach is offered to determine the optimal combination of transport network technologies (optimal/wireless) and processing units needed to deliver 5G services while being cost and energy efficient. The hyper densification of the 5G network increases complexity, planning, and optimization issues, as well as cost and all other qualities that are described. It has become a strategic consensus of the international community for accelerating the deployment of 5G network. This paper presents an approach for the deployment of 5G base stations under the consideration of users experience and cost effective.

1.
IMT traffic estimates for the years 2020 to 2030 [Review of IMT traffic estimates for the years 2020 to 2030]
. ITU. Retrieved July 2015, from http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf
2.
Abdulraqeb
,
A.
,
Mardeni
,
R.
,
Yusoff
,
A. M.
,
Ibraheem
,
S.
, &
Saddam
,
A.
(
2019
).
Self-optimization of Handover Control Parameters for Mobility Management in 4G/5G Heterogeneous Networks
.
Automatic Control and Computer Sciences
,
53
(
5
),
441
451
.
3.
Abo-Zeed
,
M.
,
Din
,
J. B.
,
Shayea
,
I.
, &
Ergen
,
M.
(
2019
).
Survey on Land Mobile Satellite System: Challenges and Future Research Trends
.
IEEE Access
,
7
,
137291
137304
.
4.
Alraih
,
S.
,
Alhammadi
,
A.
,
Shayea
,
I.
, &
Al-Samman
,
A. M.
(
2017
, October 1).
Improving accuracy in indoor localization system using fingerprinting technique
.
IEEE Xplore
.
5.
El-Saleh
,
A. A.
,
Alhammadi
,
A.
,
Shayea
,
I.
,
Alsharif
,
N.
,
Alzahrani
,
N. M.
,
Khalaf
,
O. I.
, &
Aldhyani
,
T. H. H.
(
2022
).
Measuring and Assessing Performance of Mobile Broadband Networks and Future 5G Trends
.
Sustainability
,
14
(
2
),
829
.
6.
Gures
,
E.
,
Shayea
,
I.
,
Ergen
,
M.
,
Azmi
,
M. H.
, &
El-Saleh
,
A. A.
(
2022
).
Machine Learning-Based Load Balancing Algorithms in Future Heterogeneous Networks: A Survey
.
IEEE Access
,
10
,
37689
37717
.
7.
Haile
,
B. B.
,
Mutafungwa
,
E.
, &
Hamalainen
,
J.
(
2020
).
A Data-Driven Multiobjective Optimization Framework for Hyperdense 5G Network Planning
.
IEEE Access
,
8
,
169423
169443
.
8.
Jones
,
P.
, &
Comfort
,
D.
(
2019
),
A commentary on the rollout of 5g mobile in the UK
,
Journal of Public Affairs
,
20
(
1
).
9.
Kammoun
,
A.
,
Nabil
Tabbane
,
Diaz
,
G.
,
Abdulhalim
Dandoush
, &
Nadjib
Achir
. (
2018
),
End-to-End Efficient Heuristic Algorithm for 5G Network Slicing
.
10.
Lorincz
,
J.
,
Klarin
,
Z.
, &
Begusic
,
D.
(
2021
).
Modeling and Analysis of Data and Coverage Energy Efficiency for Different Demographic Areas in 5G Networks
.
IEEE Systems Journal
,
1
12
.
11.
Navarro-Ortiz
,
J.
,
Romero-Diaz
,
P.
,
Sendra
,
S.
,
Ameigeiras
,
P.
,
Ramos-Munoz
,
J. J.
, &
Lopez-Soler
,
J. M.
(
2020
).
A Survey on 5G Usage Scenarios and Traffic Models
.
IEEE Communications Surveys Tutorials
,
22
(
2
),
905
929
.
12.
Pereira
,
J. M.
(
2021
).
5G for Connected and Automated Mobility (CAM) in Europe: Targeting Cross-Border Corridors
.
IEEE Network
,
35
(
3
),
6
9
.
13.
Saad
,
W. K.
,
Shayea
,
I.
,
Hamza
,
B. J.
,
Mohamad
,
H.
,
Daradkeh
,
Y. I.
, &
Jabbar
,
W. A.
(
2021
).
Handover Parameters Optimisation Techniques in 5G Networks
.
Sensors
,
21
(
15
),
5202
.
14.
Selmaoui
,
B.
,
Mazet
,
P.
,
Petit
,
P.
,
Kim
,
K.
,
Choi
,
D.
, &
Seze
,
R.
(
2021
).
Exposure of South Korean Population to 5G Mobile Phone Networks (3.4–3.8 GHz
).
Bioelectromagnetics
,
42
(
5), 407–414
.
15.
Shayea
,
I.
,
Ismail
,
M.
,
Nordin
,
R.
,
Mohamad
,
H.
,
Abd Rahman
,
T.
, &
Abdullah
,
N. F.
(
2016
).
Novel Handover Optimization with a Coordinated Contiguous Carrier Aggregation Deployment Scenario in LTE-Advanced Systems
.
Mobile Information Systems
,
2016
,
1
20
.
16.
Sonmez
,
S.
,
Ibraheem
Shayea
,
Sajjad Ahmad
Khan
, &
Abdulraqeb
Alhammadi
. (
2020
).
Handover Management for Next-Generation Wireless Networks: A Brief Overview.
17.
Tzanakaki
,
A.
,
Anastasopoulos
,
M. P.
, &
Dimitra
Simeonidou
. (
2019
).
Converged Optical, Wireless, and Data Center Network Infrastructures for 5G Services.
11
(
2
),
A111
A111
.
18.
Wang
,
C.-H.
,
Lee
,
C.-J.
, &
Wu
,
X.
(
2020
).
A Coverage-Based Location Approach and Performance Evaluation for the Deployment of 5G Base Stations
.
IEEE Access
,
8
,
123320
123333
.
19.
Wu
,
N.
,
Wang
,
S.
, &
Zhou
,
Z.-H.
(
2019
).
Machine learning for 5G and beyond: From model-based to data-driven mobile wireless networks
.
16
(
1
),
165
175
.
This content is only available via PDF.
You do not currently have access to this content.