The Magnetorheological (MR) brake is an advanced technology that uses a special fluid to produce braking force. Its design includes a closely arranged multiple-disk configuration to increase the surface area of contact with the MR fluid. The MR fluid’s medium viscosity is used to enhance the braking force. The article aims to evaluate the thickness of gaps that contribute to the braking force, a crucial performance indicator of the MR brake with multiple disks. To demonstrate its performance, Finite Element Magnetic Method simulation software is used to predict the magnetic field distribution within the brake, and the brake model calculation is derived based on the proposed model. The simulation results show that the proposed model improves the braking torque of the MR brake with multiple disks. The effects of gap size and operational range variation on the braking force contribution are also presented.

1.
Choi
,
Y.-T.
, &
Wereley
,
N. M.
(
2002
).
Comparative Analysis of the Time Response of Electrorheological and Magnetorheological Dampers Using Nondimensional Parameters
.
Journal of Intelligent Material Systems and Structures
,
13
(
7-8
),
443
451
.
2.
Choi
,
Y. T.
,
Cho
,
J. U.
,
Choi
,
S. B.
, &
Wereley
,
N. M.
(
2005
).
Constitutive models of electrorheological and magnetorheological fluids using viscometers
.
Smart Materials and Structures
,
14
(
5
),
1025
1036
.
3.
El Wahed
,
A. K.
,
Sproston
,
J. L.
, &
Schleyer
,
G. K.
(
2002
).
Electrorheological and Magnetorheological Fluids in Blast Resistant Design Applications
.
Materials & Design
,
23
(
4
),
391
404
.
4.
Fenyk
,
A.
,
Horak
,
W.
,
Zielinski
,
M.
,
Miykos
,
E.
,
Chrzescijanska
,
E.
, &
Sroczynski
,
D.
(
2022
).
Investigation of the properties of selected magnetorheological fluids
.
Journal of Intelligent Material Systems and Structures
,
33
(
18
),
2294
2304
.
5.
George
,
L. K.
,
Tamilarasan
,
N.
, &
Thirumalini
,
S.
(
2018
).
Design and analysis of magneto rheological fluid brake for an all terrain vehicle
. In
IOP Conference Series: Materials Science and Engineering.
6.
Gorodkin
,
S.
,
Zhuravski
,
N.
, &
Kordonski
,
W.
(
2002
).
SURFACE SHEAR STRESS ENHANCEMENT UNDER MR FLUID DEFORMATION
.
International Journal of Modern Physics B
,
l6
(
17nl8
),
2745
2750
.
7.
Grunwald
,
A.
, &
Olabi
,
A. G.
(
2008
).
Design of magneto-rheological (MR) valve
.
Sensors and Actuators, A: Physical
,
148(1
),
211
223
.
8.
Guo
,
H. T.
, &
Liao
,
W.
H. (
2012
).
A novel multifunctional rotary actuator with magnetorheological fluid
.
Smart Materials and Structures
,
21
(
6
),
65012
.
9.
Hong
,
S. R.
,
Choi
,
S. B.
,
Choi
,
Y. T.
, &
Wereley
,
N. M.
(
2005
).
Non-dimensional analysis and design of a magnetorheological damper
.
Journal of Sound and Vibration
,
288
(
4
),
847
-
863
.
10.
Ichwan
,
B.
,
Mazlan
,
S. A.
,
Imaduddin
,
F.
,
Ubaidillah
,
Koga
, T., &
Idris
,
M.
H. (
2016
).
Development of a modular MR valve using meandering flow path structure
.
Smart Materials and Structures
,
25
(
3
).
11.
Imaduddin
,
F.
,
Mazlan
,
S. A.
,
Zamzuri
,
H.
, &
Yazid
,
I. I. M.
(
2015
).
Design and performance analysis of a compact magnetorheological valve with multiple annular and radial gaps
.
Journal of Intelligent Material Systems and Structures
,
26
(
9
),
1038
1049
.
12.
Jolly
,
M. R.
,
Bender
,
J. W.
, &
Carlson
,
J. D.
(
1999
).
Properties and Applications of Commercial Magnetorheological Fluids
.
Journal of Intelligent Material Systems and Structures
,
10
(
1
),
5
13
.
13.
Karakoc
,
K.
,
Park
,
E. J.
, &
Suleman
,
A.
(
2008
).
Design considerations for an automotive magnetorheological brake
.
Mechatronics
,
18
(
8
),
434
447
.
14.
Kikuchi
,
T.
,
Kobayashi
,
K.
, &
Inoue
,
A.
(
2011
).
Gap-Size Effect of Compact MR Fluid Brake
.
Journal of Intelligent Material Systems and Structures
,
22
(
15
),
1677
1683
.
15.
Laun
,
H. M.
,
Gabriel
,
C.
, &
Kieburg
,
C.
(
2011
).
Wall material and roughness effects on transmittable shear stresses of magnetorheological fluids in plate-plate magnetorheometry
.
Rheologica Acta
,
50
(
2
),
141
157
.
16.
Li
,
W. H.
, &
Du
,
H.
(
2003
).
Design and Experimental Evaluation of a Magnetorheological Brake
.
The International Journal of Advanced Manufacturing Technology
,
21
(
7
),
508
515
.
17.
Lord
,
C.
(
2011
).
MRF-132DG Magneto-Rheological Fluid
.
Lord Technical Data.
https://doi.org/)D DS7015 (Rev.I 11/11)
18.
Nam
,
T. H.
, &
Ahn
,
K. K.
(
2009
).
A new structure ofa magnetorheological brake with the waveform boundary of a rotary disk
.
Smart Materials and Structures
,
18
(
11
),
115029
.
19.
Nguyen
,
Q.-H.
,
Han
,
Y.-M.
,
Choi
,
S.-B.
, &
Wereley
,
N. M.
(
2007
).
Geometry optimization of MR valves constrained in a specific volume using the finite element method
.
Smart Materials and Structures
,
16
(
6
),
2242
2252
.
20.
Nguyen
,
Q. H.
, &
Choi
,
S. B.
(
2010
).
Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat
.
Smart Materials and Structures.
21.
Park
,
E. J.
,
Stoikov
,
D.
,
Falcao
da Luz
, L., &
Suleman
,
A.
(
2006
).
A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller
.
Mechatronics
,
16
(
7
),
405
416
.
22.
Park
,
J.-D.
,
Kim
,
H.
,
Lee
,
S.-G.
,
Choi
,
M.-J.
,
Cho
,
H.-C.
, &
Ryu
,
J.-K.
(
2016
).
Design ofa MR-fluid brake with multi-layered disks for a compact actuating device
. In
2016 16th International Conference on Control, Automation and Systems (ICCAS)
(pp.
1533
1536
).
23.
Qin
,
H.
,
Song
,
A.
,
Zeng
,
X.
, &
Hu
,
S.
(
2018
).
Design and evaluation of a small-scale multi-drum magnetorheological brake
.
Journal of Intelligent Material Systems and Structures
,
29
(
12
),
2607
2618
.
24.
Satyajit R.
Patil
, &
Suresh M.
Sawant
. (
2022
).
Experimental Studies on Magnetorheological Brake for Automotive Application
.
International Journal of Automotive and Mechanical Engineering
,
15
(
1
SE-Articles),
4893
4908
.
25.
Sgobba
,
S.
(
2011
).
Physics and measurements of magnetic materials
.
Cern
,
4
,
25
. Retrieved from http://arxiv.org/abs/1l03.1069
26.
Shiao
,
Y.
, &
Nguyen
,
Q.-A.
(
2014
).
Torque Enhancement for a New Magnetorheological Brake
.
Procedia Engineering
,
76
,
12
23
.
27.
Singh
,
R. K.
, &
Sarkar
,
C.
(
2023
).
Two-wheeler magnetorheological drum brake operating under hybrid mode for enhancing braking torque: Development and validation
.
Mechatronics
,
92
,
102971
.
28.
Sohn
,
J. W.
,
Gang
,
H. G.
, &
Choi
,
S.-B.
(
2018
).
An experimental study on torque characteristics of magnetorheological brake with modified magnetic core shape
.
Advances in Mechanical Engineering
,
10
(
1
),
1687814017752222
.
29.
Tian
,
Z.-Z.
,
Chen
,
F.
, &
Wang
,
D.-M.
(
2014
).
Influence of wall characteristics on transmittable torque of magnetorheological fluid
.
Journal of Intelligent Material Systems and Structures
,
25
(
15
),
1937
1949
.
30.
Wang
,
N.
,
Li
,
D. H.
,
Song
,
W. L.
,
Xiu
,
S. C.
, &
Meng
,
X. Z.
(
2016
).
Effect of surface texture and working gap on the braking performance of the magnetorheological fluid brake
.
Smart Materials and Structures
,
25
(
10
),
105026
.
31.
Zainordin
,
A Z
,
Mohamed
,
Z.
, &
Ahmad
,
F.
(
2021
).
The Magnetorheological Fluid: Testing on Automotive Braking System
.
International Journal of Automotive and Mechanical Engineering
,
18
(
1
),
8577
-
32.
Zainordin
,
Ahmad
Zaifazlin bin
,
Hudha
,
K.
,
Jamaluddin
,
H.
, &
Nuri
,
N. R. bin M.
(
2015
).
Design and characterisation of magnetorheological brake system
.
International Journal of Engineering Systems Modelling and Simulation
,
7
(
1
),
62
70
.
This content is only available via PDF.
You do not currently have access to this content.