In this work, the effects of loading and silane treatment of alumina nanoparticle fillers on the mechanical properties of the carbon fibre-reinforced polymer composite were investigated. The nanoparticles were introduced into the polymer matrix at three different mass fractions, namely 1 wt%, 2 wt%, and 3 wt% of epoxy weight. The nanoparticles increased the average elastic modulus of the composite by more than 80% with a considerable reduction in its tensile strength of close to 29%. The fillers were then treated using three different silane coupling agents, namely (3-Aminopropyl)triethoxysilane, (3-Glycidyloxypropyl)trimethoxysilane, and 3-(Trimethoxysilyl)propylmethacrylate, before their introduction into the matrix at 2 wt% loading. It was found that the silane treatment further enhanced the elastic modulus of the composite and compromised the tensile strength of the composite. This experiment shows that silane treatment augmented the effect of alumina particle loading on the mechanical properties of carbon fibre-reinforced polymer composite, and it has negligible impact on the nanocomposite hardness. 3-(Trimethoxysilyl)propylmethacrylate caused the greatest augmentation whereas (3-Aminopropyl)triethoxysilane the least. Scanning electron microscopy showed the appearance of voids, microcracking, and agglomeration of nanoparticles at 1 wt% to 2 wt%. At 3 wt%, a significantly different matrix rupture was observed. At 1 wt%, the nanoparticles were most uniformly dispersed, which concurred with the greatest enhancement in elastic modulus. However, nanoparticles served as stress concentration sites, reducing the tensile strength. On the other hand, silane treatment seemed to have prevented agglomeration but at the cost of inducing air bubbles that weaken the composites considerably.

1.
P.
Jojibabu
,
Y.
Zhang
and
B. Gangadhara
Prusty
,
Int. J. Adhes Adhes
96
, Article
102454
(
2020
).
2.
M.
Abu-Okail
,
N.
Alsaleh
,
W.
Farouk
,
A.
Elsheikh
,
A.
Abu-Oqail
,
Y.
Abdelraouf
and
M. Abdel
Ghafaar
,
Journal of Materials Research and Technology
14
,
2624
2637
(
2021
).
3.
A.
Selimov
,
S.
Jahan
,
E.
Barker
,
P.
Dackus
,
D.
Carolan
,
A.
Taylor
and
S.
Raghavan
,
Applied Optics
57
(
23
),
6671
6678
(
2018
).
4.
D. K.
Shukla
,
S.
Kasisomayajula
and
V.
Parameswaran
,
Compos. Sci. Technol.
68
(
14
),
3055
3063
(
2008
).
5.
S. H.
Lim
,
K. Y.
Zeng
and
C. B.
He
,
Mater. Sci. Eng. A.
527
(
21–22
),
5670
5676
(
2010
).
6.
A.
Mohanty
and
V. K.
Srivastava
,
Fiber Polym.
16
(
1
),
188
195
(
2015
).
7.
A.
Mohanty
,
V.
Srivastava
and
P.
Sastry
,
J. Appl. Polym. Sci.
39749
,
1
7
(
2014
).
8.
F.
Ghadami
,
M. R.
Dadfar
and
M.
Kazazi
,
Eng. Fract. Mech.
162
,
193
200
(
2016
).
9.
H. B.
Kaybal
,
H.
Ulus
,
O.
Demir
,
Ӧ. S.
Şahin
and
A.
Avcı
,
Engineering Science and Technology, an International Journal
,
21
(
3
),
399
407
(
2018
).
10.
S. C.
Zunjarrao
and
R. P.
Singh
,
Compos. Sci. Technol.
66
),
2296
2305
(
2006
).
11.
Z.
Guo
,
T.
Pereira
,
O.
Choi
,
Y.
Wang
and
H.
Hahn
,
J. Mater. Chem.
16
),
2800
2808
(
2006
).
12.
A. M.
Amaro
,
L.
Bernardo
,
D.
Pinto
,
S.
Lopes
,
J.
Rodrigues
and
C.
Louro
,
Compos. B Eng.
84
,
17
24
(
2016
).
13.
S.
Maghsoudian
,
A.
Salimi
and
M.
Mirzataheri
,
Int. J. Adhes Adhes
92
,
119
124
(
2019
).
14.
M.
Jahan
,
R.
Inakpenu
,
K.
Li
and
G.
Zhao
,
Open Journal of Composite Materials
9
,
230
248
(
2019
).
15.
L.
Zeng
,
W.
Tao
,
J.
Zhao
,
Y.
Li
and
R.
Li
,
Nanotechnology Review
11
,
625
636
(
2022
).
16.
D.
Bazrgari
,
F.
Moztarzadeh
,
A.
Sabbagh-Alvani
,
M.
Rasoulianboroujeni
,
M.
Tahriri
and
L.
Tayebi
,
Ceramics Int.l
44
(
1
)
1220
1224
(
2018
).
17.
V.
Fiore
,
V.
Orlando
,
C.
Sanfilippo
,
D.
Badagliacco
and
A.
Valenza
,
Fibers
8
(
8
),
48
(
2020
).
18.
H.
Wang
,
H.
Zhou
,
R.
Peng
and
L.
Mishnaevsky
Jr
,
Compos. Sci. Technol.
71
(
7
),
980
988
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.