This research aims to evaluate the effectiveness of different existing vision-based deep-learning models for the inspection of sewer pipes. The inspection of the sewer pipes is critically essential because sewer damage can lead to several extreme situations which include but are not limited to property loss, environmental pollution, sewer line system collapse that will result in a flood, etc. On that account, a sewer inspection process is necessary. Most of the sewer inspections, currently, adopted by the people are still using human vision to evaluate the condition of a sewer pipe’s interior, which is easily subject to human error. Thus, this research proposed a vision-based Artificial lntelligence (Al) for inspecting the sewer pipes’ interior anomaly to assist the decision-making process as well as increase operational efficiency. The images used in this research are obtained from an open-source data set consisting of images depicting both defective and non­ defective sewer pipes interiors. A few deep learning models were trained by using ResNet, DenseNet, MobileNet and You Only Look Once (YOLO). The experiments showed that the accuracy of models is encouraging and promising.

1.
Alzubaidi
,
L.
,
Zhang
,
J.
,
Humaidi
,
A. J.
,
Al-Dujaili
,
A.
,
Duan
,
Y.
,
Al-Shamma
,
O.
,
Santamaria
,
J.
,
Fadhel
,
M. A.
,
Al-Amidie
,
M.
, &
Farhan
,
L.
(
2021
).
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
.
Journal of Big Data
,
8
(
1
).
2.
Bi
,
C.
,
Wang
,
J.
,
Duan
,
Y.
,
Fu
,
B.
,
Kang
,
J. R.
, &
Shi
,
Y.
(
2022
).
MobileNet Based Apple Leaf Diseases Identification
.
Mobile Networks and Applications
,
27
(
1
),
172
180
.
3.
Bloice
,
M. D.
,
Stocker
,
C.
, &
Holzinger
,
A.
(
2017
).
Augmentor: An Image Augmentation Library for Machine Leaming
. http://arxiv.org/abs/l708.04680
4.
Bruslund
,
J.
,
Thomas
,
H.
, &
Moeslund
,
B.
(
2021
).
Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark.
http://vap.aau.dk/sewer-ml
5.
Byerly
,
A.
,
Kalganova
,
T.
, &
Grichnik
,
A. J.
(
2021
).
On the Importance of Capturing a Sufficient Diversity of Perspective for the Classification ofmicro-PCBs
. http://arxiv.org/abs/2101.ll164
6.
Chauhan
,
T.
,
Palivela
,
H.
, &
Tiwari
,
S.
(
2021
).
Optimization and fine-tuning of DenseNet model for classification of COVID-19 cases in medical imaging
.
International Journal of Information Management Data Insights
,
1
(
2
).
7.
Chollet
,
F.
(
2017
).
Xception: Deep Leaming with Depthwise Separable Convolutions.
8.
Cohen
,
J.P.
,
Morrison
,
P.
,
Dao
,
L.
,
Roth
,
K.
,
Duong
,
T. Q.
, &
Ghassemi
,
M.
(
2020
).
COVID-19 Image Data Collection: Prospective Predictions Are the Future
. http://arxiv.org/abs/2006.11988
9.
Glenn
Jocher
,
Ayush
Chaurasia
, & Laughing. (
2022
, December 5).
Ultralytics YOLOv8 Docs.
https://docs.ultralytics.com/
10.
Glucina
,
M.
,
Andelic
,
N.
,
Lorencin
,
I.
, &
Car
,
Z.
(
2023
).
Detection and Classification of Printed Circuit Boards Using YOLO Algorithm
.
Electronics (Switzerland)
,
12
(
3
).
11.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, &
Sun
,
J.
(
2015
).
Deep Residual Leaming for Image Recognition
. http://arxiv.org/abs/1512.03385
12.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, &
Sun
,
J.
(
2016
).
Identity Mappings in Deep Residual Networks
. http://arxiv.org/abs/1603.05027
13.
Hossain
,
D.
,
Imtiaz
,
M. H.
,
Ghosh
,
T.
,
Bhaskar
,
V.
, &
Sazonov
,
E.
(
2020
).
Real-Time Food Intake Monitoring Using Wearable Egocnetric Camera
.
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
,
4191
4195
.
14.
Howard
,
A.G.
,
Zhu
,
M.
,
Chen
,
B.
,
Kalenichenko
,
D.
,
Wang
,
W.
,
Weyand
,
T.
,
Andreetto
,
M.
, & Adam, H. (
2017
).
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
. http://arxiv.org/abs/1704.04861
15.
Howard
,
A.
,
Sandler
,
M.
,
Chu
,
G.
,
Chen
,
L.-C.
,
Chen
,
B.
,
Tan
,
M.
,
Wang
,
W.
,
Zhu
,
Y.
,
Pang
,
R.
,
Vasudevan
,
V.
,
Le
,
Q. V.
, &
Adam
,
H.
(
2019
).
Searching for MobileNetV3
. http://arxiv.org/abs/1905.02244
16.
Huang
,
G.
,
Liu
,
Z.
,
van der Maaten
,
L.
, &
Weinberger
,
K. Q.
(
2016
).
Densely Connected Convolutional Networks
. http://arxiv.org/abs/1608.06993
17.
Hussain
,
M.
(
2023
).
YOLO-vl to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection
. In
Machines
(Vol.
11
, Issue
7
). Multidisciplinary Digital Publishing Institute (MDPI).
18.
I Green Engineering Sdn Bhd
. (
2023
).
Sewerline Inspection
. https://www.i-green.my/our-services/cctv-inspection/sewerline-inspection/
19.
Janowczyk
,
A.
, &
Madabhushi
,
A.
(
2016
).
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
.
Journal of Pathology Informatics
,
7
(
1
).
20.
Kermany
,
D.S.
,
Goldbaum
,
M.
,
Cai
,
W.
,
Valentim
,
C. C. S.
,
Liang
,
H.
,
Baxter
,
S. L.
,
McKeown
,
A.
,
Yang
,
G.
,
Wu
,
X.
,
Yan
,
F.
,
Dong
,
J.
,
Prasadha
,
M. K.
,
Pei
,
J.
,
Ting
,
M.
,
Zhu
,
J.
,
Li
,
C.
,
Hewett
,
S.
,
Dong
,
J.
,
Ziyar
,
I.
, …
Zhang
,
K.
(
2018
).
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Leaming
.
Cell
,
172
(
5
),
1122
113l
.e9.
21.
Kim
,
J.-H.
,
Kim
,
N.
,
Park
,
Y. W.
, &
Won
,
C. S.
(
2022
).
Object Detection and Classification Based on YOLO-VS with Improved Maritime Dataset
.
Journal of Marine Science and Engineering
,
10
(
3
),
377
.
22.
Krizhevsky
,
A.
(
2009
).
Leaming Multiple Layers of Features from Tiny Images
.
23.
Kumar
,
V.
,
Arora
,
H.
,
Harsh
, &
Sisodia
,
J.
(
2020
).
ResNet-based approach for Detection and Classification of Plant Leaf Diseases
.
2020 International Conference on Electronics and Sustainable Communication Systems (ICESC)
,
495
502
.
24.
Legaspi
,
K. R. B.
,
Sison
,
N. W. S.
, &
Villaverde
,
J. F.
(
2021
).
Detection and Classification of Whiteflies and Fruit Flies Using YOLO
.
2021 13th International Conference on Computer and Automation Engineering, ICCAE
2021
,
1
4
.
25.
Liang
,
J.
(
2020
).
Image classification based on RESNET
.
Journal of Physics: Conference Series
,
1634
(
1
).
26.
Mandal
,
B.
,
Okeukwu
,
A.
, &
Theis
,
Y.
(
2021
).
Masked Face Recognition using ResNet-50
. http://arxiv.org/abs/2l04.08997
27.
Mohamad Yusoff
,
I.
,
Ramli
,
A.
,
Mhd Alkasirah
,
N. A.
, &
Mohd Nasir
,
N.
(
2018
).
Exploring the managing of flood disaster: A Malaysian perspective
.
Malaysian Journal of Society and Space
,
14
(
3
),
24
36
.
28.
Prasad
,
D. K.
,
Rajan
,
D.
,
Rachmawati
,
L.
,
Rajabaly
,
E.
, &
Quek
,
C.
(
2016
).
Video Processing from Electro-optical Sensors for Object Detection and Tracking in Maritime Environment: A Survey.
http://arxiv.org/abs/1611.05842
29.
Rabano
,
S. L.
,
Cabatuan
,
M. K.
,
Sybingco
,
E.
,
Dadios
,
E. P.
, &
Calilung
,
E. J.
(
2018
).
Common Garbage Classification Using MobileNet. 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control
,
Environment and Management (HNICEM)
,
1
4
.
30.
Rajalaxmi
,
R.R.
,
Sudharsana
,
P. P.
,
Rithani
,
A. M.
,
Preethika
,
S.
,
Dhivakar
,
P.
, &
Gothai
,
E.
(
2023
).
Deepfake Detection using Inception-ResNet-V2 Network
.
Proceedings - 7th International Conference on Computing Methodologies and Communication, ICCMC
2023
,
580
586
.
31.
Rajbongshi
,
A.
,
Sarker
,
T.
,
Ahamad
,
Md. M.
, &
Rahman
,
Md. M.
(
2020
).
Rose Diseases Recognition using MobileNet
.
2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)
,
1
7
.
32.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, &
Farhadi
,
A.
(
2015
).
You Only Look Once: Unified, Real-Time Object Detection
. http://arxiv.org/abs/1506.02640
33.
Rossler
,
A.
,
Cozzolino
,
D.
,
Verdoliva
,
L.
,
Riess
,
C.
,
Thies
,
J.
, &
NieBner
,
M.
(
2019
).
FaceForensics++: Leaming to Detect Manipulated Facial Images
. http://arxiv.org/abs/1901.08971
34.
Sae-Lim
,
W.
,
Wettayaprasit
,
W.
, &
Aiyarak
,
P.
(
2019
).
Convolutional Neural Networks Using MobileNet for Skin Lesion Classification
.
2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE)
,
242
247
.
35.
Tschandl
,
P.
,
Rosendahl
,
C.
, &
Kittler
,
H.
(
2018
).
Data descriptor: The HAMIO000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
.
Scientific Data
,
5
.
36.
Veeling
,
B. S.
,
Linmans
,
J.
,
Winkens
,
J.
,
Cohen
,
T.
, &
Welling
,
M.
(
2018
).
Rotation Equivariant CNNs for Digital Pathology
. http://arxiv.org/abs/1806.03962
37.
Visi Nusajaya Sdn
Bhd
. (
2023
).
SEWER CLEANING AND INSPECTION (CCTV
). http://www.visinusajaya.com.my/page/198/Sewer-Cleaning-and-Inspection-(CCTV)/
38.
Wakili
,
M.A.
,
Shehu
,
H. A.
,
Sharif
,
M. H.
,
Sharif
,
M. H. U.
,
Umar
,
A.
,
Kusetogullari
,
H.
,
Ince
,
I. F.
, &
Uyaver
,
S.
(
2022
).
Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Leaming
.
Computational Intelligence and Neuroscience
,
2022
.
39.
Wang
,
Z.
,
Wang
,
G.
,
Huang
,
B.
,
Xiong
,
Z.
,
Hong
,
Q.
,
Wu
,
H.
,
Yi
,
P.
,
Jiang
,
K.
,
Wang
,
N.
,
Pei
,
Y.
,
Chen
,
H.
,
Miao
,
Y.
,
Huang
,
Z.
, & Liang, J. (
2020
).
Masked Face Recognition Dataset and Application
. http://arxiv.org/abs/2003.09093
40.
Yang
,
M.
, &
Thung
,
G.
(
2016
).
Classification of Trash for Recyclability Status
.
41.
Yilmaz
,
A.
,
Nur
Uzun
, G.,
Zahid
Gurbuz
, M., &
Kivrak
,
O.
(
2021
, August 25).
Detection and breed classification of cattle using YOLO v4 algorithm
.
2021 International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2021 - Proceedings.
42.
Yuan
,
X.
,
Zhang
,
L.
, &
Zhao
,
S.
(
2023
).
DenseNet Convolutional Neural Network for Breast Cancer Diagnosis
.
In Proceedings of the 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022)
(pp.
197
-
202
).
Atlantis Press International BV
.
43.
Zhong
,
Z.
,
Zheng
,
M.
, Mai, H.,
Zhao
,
J.
, &
Liu
,
X.
(
2020
).
Cancer image classification based on DenseNet model
.
Journal of Physics: Conference Series
,
1651
(
1
).
This content is only available via PDF.
You do not currently have access to this content.