Thennal comfort is a crucial aspect that measures people’s satisfaction with their thennal sensations. It has a significant impact on individuals, affecting their work performance, cognitive function, and healthcare. Furthermore, interior designers may have difficulty determining the comfortability of a space without expertise in thermal comfort assessment. Over the years, researchers have explored various approaches to develop thermal comfort models, including using the heat balance equation in the past. In recent years, with the rapid growth of machine learning technology, researchers have become more interested in using machine learning to develop thermal comfort models. Hence, in this paper, some machine learning models are selected to develop the thermal comfort model using a well-known thermal comfort dataset, namely ASHRAE Comfort Database II (version 2018) to predict 3-point Thermal Sensation Vote. The study introduces a novel approach to build thermal comfort prediction models that include country as a contributing factor. This new method has shown improvement compared to past research. The Random Forest method demonstrated significant potential for handling and performing well with datasets from various countries. The study unveiled only slight differences in predictive accuracy across various countries, regardless of using 6, 7, or 12 feature inputs, suggesting that increasing the number of feature inputs beyond seven did not significantly enhance the model’s performance. Furthennore, the models used in the study were deemed fair and reliable, supported by K-Fold cross-validation and minimal variation in the model results.

1.
Ashrae
, “
Standard 55-2013: Thermal environmental conditions for human occupancy.
,”
American Society of Heating, Refrigerating, Air-Conditioning Engineers
,
Inc
.
Atlanta
, (
2013
).
2.
M.
Fountain
,
G.
Brager
, and
R.
de Dear
, “
Expectations of indoor climate control
,”
Energy Build
24
(
3
),
179
182
(
1996
).
3.
K.W.
Tham
, and
H.C.
Willem
, “
Room air temperature affects occupants’ physiology, perceptions and mental alertness
,”
Build Environ
45
(
1
),
40
44
(
2010
).
4.
D.P.
Wyon
, “
The effects of indoor air quality on performance and productivity
,”
Indoor Air
14
,
92
101
(
2004
).
5.
R.
Maddalena
,
M.J.
Mendell
,
K.
Eliseeva
,
W.R.
Chan
,
D.P.
Sullivan
,
M.
Russell
,
U.
Satish
, and
W.J.
Fisk
, “
Effects of ventilation rate per person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making
,”
Indoor Air
25
(
4
),
362
370
(
2015
).
6.
Centers for Disease Control and Prevention (CDC)
, “
Hypothermia-related deaths--Philadelphia, 2001, and United States, 1999.
,”
MMWR Morb Mortal Wkly Rep
52
(
5
),
86
7
(
2003
).
7.
M.
Shahinmoghadam
,
W.
Natephra
, and
A.
Motamedi
,
"BIM- and IoT-based virtual reality tool for real-time thermal comfort assessment in building enclosures
,”
Build Environ
199
, (
2021
).
8.
G.
Ma
,
Y.
Liu
, and
S.
Shang
, “
A building infonnation model (BIM) and artificial neural network (ANN) based system for personal thermal comfort evaluation and energy efficient design of interior space
,”
Sustainability (Switzerland)
11
(
18
), (
2019
).
9.
L.
Yang
,
H.
Yan
, and
J.C.
Lam
, “
Thermal comfort and building energy consumption implications -A review
,”
ApplEnergy
115
,
164
173
(
2014
).
10.
C.
Ekici
, “
Measurement Uncertainty Budget of the PMV Thermal Comfort Equation
,”
Int J Thermophys
37
(
5
), (
2016
).
11.
S.
Zare
,
N.
Hasheminejad
,
H.E.
Shirvan
,
R.
Hemmatjo
,
K.
Sarebanzadeh
, and
S.
Ahmadi
, “
Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year
,”
Weather Clim Extrem
19
,
49
57
(
2018
).
12.
Y.
Song
,
F.
Mao
, and
Q.
Liu
, “
Human Comfort in Indoor Environment: A Review on Assessment Criteria, Data Collection and Data Analysis Methods
,”
IEEE Access
7
,
119774
119786
(
2019
).
13.
W.
Ji
,
Y.
Zhu
, and
B.
Cao
, “
Development of the Predicted Thermal Sensation (PTS) model using the ASHRAE Global Thennal Comfort Database
,”
Energy Build
211
, (
2020
).
14.
W.
Ji
,
Y.
Zhu
,
H.
Du
,
B.
Cao
,
Z.
Lian
,
Y.
Geng
,
S.
Liu
,
J.
Xiong
, and
C.
Yang
, “
Interpretation of standard effective temperature (SET) and explorations on its modification and development
,”
Build Environ
210
, (
2022
).
15.
S.A.
Zaki
,
S.A.
Damiati
,
H.B.
Rijal
,
A.
Hagishima
, and
A. Abd
Razak
, “
Adaptive thermal comfort in university classrooms in Malaysia and Japan
,”
Build Environ
122
,
294
306
(
2017
).
16.
E.E.
Broday
,
J.A.
Moreto
,
A.A. de P.
Xavier
, and
R.
de Oliveira
, “
The approximation between thermal sensation votes (TSV) and predicted mean vote (PMV): A comparative analysis
,”
Int J Ind Ergon
69
,
1
8
(
2019
).
17.
M.
Luo
,
J.
Xie
,
Y.
Yan
,
Z.
Ke
,
P.
Yu
,
Z.
Wang
, and
J.
Zhang
, “
Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II
,”
Energy Build
210
,
109776
(
2020
).
18.
T.
Chaudhuri
,
Y.C.
Soh
,
H.
Li
, and
L.
Xie
, in 2017 IEEE International Conference on Smart Grid and Smart Cities,
ICSGSC 2017
(
Institute of Electrical and Electronics Engineers Inc
.,
2017
), pp.
72
77
.
19.
Y.T.
Acquaah
,
B.
Gokaraju
,
R.C. Tesiero
III
, and
K.
Roy
, (
2022
), pp.
659
665
.
20.
F.H.
Mohamed
Salleh
,
M.B.
Saripuddin
, and
R.
Bin Omar
, in
2020 8th International Conference on Information Technology and Multimedia
,
ICIMU 2020
(
Institute ofElectrical and Electronics Engineers Inc
.,
2020
), pp.
170
176
.
21.
A.A.
Farhan
,
K.
Pattipati
,
B.
Wang
, and
P.
Luh
,
in
2015 IEEE International Conference on Automation Science and Engineering (CASE
) (
IEEE
,
2015
), pp.
708
713
.
22.
N.
Gao
,
W.
Shao
,
M.S.
Rahaman
,
J.
Zhai
,
K.
David
, and
F.D.
Salim
, “
Transfer learning for thermal comfort prediction in multiple cities
,”
Build Environ
195
, (
2021
).
23.
M.
Fayyaz
,
A.A.
Farhan
, and
A.R.
Javed
, “
Thermal Comfort Model for HVAC Buildings Using Machine Learning
,”
Arab J Sci Eng
47
(
2
),
2045
2060
(
2022
).
24.
J.
Kim
,
Y.
Zhou
,
S.
Schiavon
,
P.
Raftery
, and
G.
Brager
, “
Personal comfort models: Predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning
,”
Build Environ
129
,
96
106
(
2018
).
25.
M.
Abdulgader
, and
F.
Lashhab
, in
2021 IEEE 11th Annual Computing and Communication Workshop and Conference
,
CCWC 2021
(
Institute of Electrical and Electronics Engineers Inc
.,
2021
), pp.
22
26
.
26.
B.
Brik
,
M.
Esseghir
,
L.
Merghem-Boulahia
, and
H.
Snoussi
, in
2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)
(
IEEE
,
2019
), pp.
294
300
.
27.
B.
Brik
,
M.
Esseghir
,
L.
Merghem-Boulahia
, and
H.
Snoussi
, “
An IoT-based deep learning approach to analyse indoor thermal comfort of disabled people
,”
Build Environ
203
,
108056
(
2021
).
28.
B.
Lala
,
H.
Rizk
,
S.M.
Kala
, and
A.
Hagishima
, “
Multi-Task Learning for Concurrent Prediction of Thermal Comfort, Sensation and Preference in Winters
,”
Buildings
12
(
6
),
750
(
2022
).
29.
L. Arakawa
Martins
,
V.
Soebarto
,
T.
Williamson
, and
D.
Pisaniello
, “
Personal thermal comfort models: a deep learning approach for predicting older people’s thermal preference
,”
Smart and Sustainable Built Environment
11
(
2
),
245
270
(
2022
).
30.
M.
Cakir
, and
A.
Akbulut
, “
A Bayesian Deep Neural Network Approach to Seven-Point Thermal Sensation Perception
,”
IEEE Access
10
,
5193
5206
(
2022
).
31.
N.
Somu
,
A.
Sriram
,
A.
Kowli
, and
K.
Ramamritham
, “
A hybrid deep transfer learning strategy for thermal comfort prediction in buildings
,”
Build Environ
204
,
108133
(
2021
).
32.
G.
Gao
,
J.
Li
, and
Y.
Wen
, “
DeepComfort: Energy-Efficient Thermal Comfort Control in Buildings Via Reinforcement Learning
,”
IEEE Internet Things J
7
(
9
),
8472
8484
(
2020
).
33.
W.
Zhang
,
W.
Hu
, and
Y.
Wen
, “
Thennal Comfort Modeling for Smart Buildings: A Fine-Grained Deep Learning Approach
,”
IEEE Internet Things J
6
(
2
),
2540
2549
(
2019
).
34.
W.
Hu
,
Y.
Wen
,
K.
Guan
,
G.
Jin
, and
K.J.
Tseng
, “
ITCM: Toward Learning-Based Thermal Comfort Modeling via Pervasive Sensing for Smart Buildings
,”
IEEE Internet Things J
5
(
5
),
4164
4177
(
2018
).
35.
K.
Irshad
,
A.I.
Khan
,
S.A.
Irfan
,
Md.M.
Alam
,
A.
Almalawi
, and
Md.H.
Zahir
, “
Utilizing Artificial Neural Network for Prediction of Occupants Thermal Comfort: A Case Study of a Test Room Fitted With a Thermoelectric Air-Conditioning System
,”
IEEE Access
8
,
99709
99728
(
2020
).
36.
V. Foldvary
Licina
,
T.
Cheung
,
H.
Zhang
,
R.
de Dear
,
T.
Parkinson
,
E.
Arens
,
C.
Chun
,
S.
Schiavon
,
M.
Luo
,
G.
Brager
,
P.
Li
,
S.
Kaam
,
M.A.
Adebamowo
,
M.M.
Andamon
,
F.
Babich
,
C.
Bouden
,
H.
Bukovianska
,
C.
Candido
,
B.
Cao
,
S.
Carlucci
,
D.K.W.
Cheong
,
J.-H.
Choi
,
M.
Cook
,
P.
Cropper
,
M.
Deuble
,
S.
Heidari
,
M.
Indraganti
,
Q.
Jin
,
H.
Kim
,
J.
Kim
,
K.
Konis
,
M.K.
Singh
,
A.
Kwok
,
R.
Lamberts
,
D.
Loveday
,
J.
Langevin
,
S.
Manu
,
C.
Moosmann
,
F.
Nicol
,
R.
Ooka
,
N.A.
Oseland
,
L.
Pagliano
,
D.
Petras
,
R.
Rawal
,
R.
Romero
,
H.B.
Rijal
,
C.
Sekhar
,
M.
Schweiker
,
F.
Tartarini
,
S.
Tanabe
,
K.W.
Tham
,
D.
Teli
,
J.
Toftum
,
L.
Toledo
,
K.
Tsuzuki
,
R.
De Vecchi
,
A.
Wagner
,
Z.
Wang
,
H.
Wallbaum
,
L.
Webb
,
L.
Yang
,
Y.
Zhu
,
Y.
Zhai
,
Y.
Zhang
, and
X.
Zhou
, “
Development of the ASHRAE Global Thennal Comfort Database II
,”
Build Environ
142
,
502
512
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.