Future mobile communication systems require high data rate, efficient capacity and more secure communication system. However, 5G/6G millimeter waves (mm-Waves) are introduced as the promising solution method for the network operators. In contrast, rainfall may severely affect negatively on signal quality since the wave length of 5G/6G frequency spectrum almost near to raindrops sizes. Thereby, deteriorating system performance. This study comprehensively surveys rain rate (RR) and rain attenuation (RA) using mm-Waves in microwave 5G/6G link systems. Moreover, most of the studies are implemented in tropical and equatorial regions due to heavy rain which increases the rain attenuation. Furthermore, different models with various operating frequencies were applied to investigate the measured/or predicted dataset. Therefore, these models were compared to investigate their effectiveness. However, several models may not working perfectly for all regions. Thus, while implementing 5G/6G radio frequency (RF) links, using real measurements gives more reliable results than using models in terms of the RR and RA.

1.
W.
Tashan
,
I.
Shayea
,
S.
Aldirmaz-Colak
,
T. A.
Rahman
,
A. A.
El-Saleh
, and
M.
Roslee
, “
Rain Rate and Rain Attenuation Over Millimeter Waves in Tropical Regions Based on Real Measurements
,” in
2021 IEEE 15th Malaysia International Conference on Communication (MICC)
,
2021
, pp.
120
125
.
2.
M.
Momin
,
M. M.
Alam
,
M. M. H.
Mahfuz
,
M. R.
Islam
,
M. H.
Habaebi
, and
K.
Badron
, “
Prediction of Rain Attenuation on Earth-to-satellite Link using Rain Rate Measurement with Various Integration Times
,” in
2021 8th International Conference on Computer and Communication Engineering (ICCCE)
,
2021
, pp.
385
390
.
3.
Y.
Banday
,
G. Mohammad
Rather
, and
G. R.
Begh
, “
Effect of atmospheric absorption on millimetre wave frequencies for 5G cellular networks
,”
IET Communications,
vol.
13
, pp.
265
270
,
2019
.
4.
W.
Tashan
,
I.
Shayea
,
S.
Aldirmaz-Colak
,
M.
Ergen
,
M. H.
Azmi
, and
A.
Alhammadi
, “
Mobility Robustness Optimization in Future Mobile Heterogeneous Networks: A Survey
,”
IEEE Access,
pp.
1
1
,
2022
.
5.
W. K.
Saad
,
I.
Shayea
,
B. J.
Hamza
,
H.
Mohamad
,
Y. I.
Daradkeh
, and
W. A.
Jabbar
, “
Handover Parameters Optimisation Techniques in 5G Networks
,”
Sensors,
vol.
21
, p.
5202
,
2021
.
6.
O.
Zahid
,
J.
Huang
, and
S.
Salous
, “
Long Term Rain Attenuation Measurements at Millimeter Wave Bands for Direct and Side Short-Range Fixed Links
,”
2020
.
7.
W.
Tashan
,
I.
Shayea
,
S.
Aldirmaz-Colak
,
O. A.
Aziz
,
A.
Alhammadi
, and
Y.
Daradkeh
, “
Advanced Mobility Robustness Optimization Models in Future Mobile Networks Based on Machine Learning Solutions
,”
IEEE Access,
pp.
1
1
,
2022
.
8.
Z.
Lin
,
X.
Du
,
H.-H.
Chen
,
B.
Ai
,
Z.
Chen
, and
D.
Wu
, “
Millimeter-wave propagation modeling and measurements for 5G mobile networks
,”
IEEE Wireless Communications,
vol.
26
, pp.
72
77
,
2019
.
9.
J. G.
Andrews
,
S.
Buzzi
,
W.
Choi
,
S. V.
Hanly
,
A.
Lozano
,
A. C.
Soong
, et al, “
What will 5G be?
,”
IEEE Journal on selected areas in communications,
vol.
32
, pp.
1065
1082
,
2014
.
10.
A. A.
El-Saleh
,
A.
Alhammadi
,
I.
Shayea
,
N.
Alsharif
,
N. M.
Alzahrani
,
O. I.
Khalaf
, et al, “
Measuring and assessing performance of mobile broadband networks and future 5G trends
,”
Sustainability,
vol.
14
, p.
829
,
2022
.
11.
Q. C.
Li
,
H.
Niu
,
A. T.
Papathanassiou
, and
G.
Wu
, “
5G network capacity: Key elements and technologies
,”
IEEE Vehicular Technology Magazine,
vol.
9
, pp.
71
78
,
2014
.
12.
A.
Billa
,
I.
Shayea
,
A.
Alhammadi
,
Q.
Abdullah
, and
M.
Roslee
, “
An overview of indoor localization technologies: Toward IoT navigation services
,” in
2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT)
,
2020
, pp.
76
81
.
13.
M.
Banafaa
,
I.
Shayea
,
J.
Din
,
M. H.
Azmi
,
A.
Alashbi
,
Y. I.
Daradkeh
, et al, “
6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities
,”
Alexandria Engineering Journal,
2022
.
14.
X.
You
,
C.-X.
Wang
,
J.
Huang
,
X.
Gao
,
Z.
Zhang
,
M.
Wang
, et al, “
Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts
,”
Science China Information Sciences,
vol.
64
, pp.
1
74
,
2021
.
15.
O.
Obiyemi
,
S.
Thakur
, and
E.
Adetiba
, “
Rain Attenuation and Rain-Rate Maps for Microwave-Communication-Network Power Sizing over the Southern African Subregion
,” in
2022 30th Southern African Universities Power Engineering Conference (SAUPEC)
,
2022
, pp.
1
5
.
16.
D.
Rao
,
D.
Nandi
, P. F, x00E, F. rez, x00E, et al, “
Long Term Prediction of Rain Rate and Attenuation using ANN and RNN Algorithms
,” in
2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS)
,
2021
, pp.
230
233
.
17.
L.
Donekeo
,
L.
Nipha
,
H.
Narong
, and
M.
Yoshiaki
, “
Study on Ka band Propagation Effect by Rain
,”
IEICE Proceeding Series,
pp.
1
4
,
2006
.
18.
C.
Han
,
Y.
Bi
,
S.
Duan
, and
G.
Lu
, “
Rain Rate Retrieval Test From 25-GHz, 28-GHz, and 38-GHz Millimeter-Wave Link Measurement in Beijing
,”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
vol.
12
, pp.
2835
2847
,
2019
.
19.
H. Y.
Lam
,
L.
Luini
,
J. b.
Din
,
M.
Alhilali
,
S. L.
Jong
, and
F.
Cuervo
, “
Impact of rain attenuation on 5G millimeter wave communication systems in equatorial Malaysia investigated through disdrometer data
,”
2017 11th European Conference on Antennas and Propagation (EUCAP),
pp.
1793
1797
,
2017
.
20.
A. N.
Uwaechia
and
N. M.
Mahyuddin
, “
A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges
,”
IEEE Access,
vol.
8
, pp.
62367
62414
,
2020
.
21.
Á.
Faragó
,
P.
Kántor
, and
J. Z.
Bitó
, “
Rain effects on 5G millimeter wave ad-hoc mesh networks investigated with different rain models
,”
Periodica Polytechnica Electrical Engineering and Computer Science,
vol.
60
, pp.
44
50
,
2016
.
22.
O. O.
Ometan
,
T. V.
Omotosho
,
S. A.
Akinwumi
,
M. O.
Adewusi
,
T. E.
Arijaje
, and
O. A.
Adeyemi
, “
Numerical Analysis of the Measured Temporal Rainfall Rate and Rain Attenuation in a Tropical Location
,” in
2021 7th International Conference on Space Science and Communication (IconSpace)
,
2021
, pp.
50
53
.
23.
A.
Suriza
,
I. M.
Rafiqul
,
A.
Wajdi
, and
A. W.
Naji
, “
Proposed parameters of specific rain attenuation prediction for free space optics link operating in tropical region
,”
Journal of Atmospheric and Solar-Terrestrial Physics,
vol.
94
, pp.
93
99
,
2013
.
24.
J. B.
Brasil
,
E. M.
de Andrade
,
H. A. de Queiroz
Palácio
,
P. H. A.
Medeiros
, and
J. C. N. dos
Santos
, “
Characteristics of precipitation and the process of interception in a seasonally dry tropical forest
,”
Journal of Hydrology: Regional Studies,
vol.
19
, pp.
307
317
,
2018
.
25.
A. Y.
Abdulrahman
,
T. B. A.
Rahman
,
S. K. B. Abd
Rahim
, and
M. R. U.
Islam
, “
A new rain attenuation conversion technique for tropical regions
,”
Progress In Electromagnetics Research B,
vol.
26
, pp.
53
67
,
2010
.
26.
I.
Shayea
,
L. A.
Nissirat
,
M. A.
Nisirat
,
A.
Alsamawi
,
T. Abd.
Rahman
,
M. Hadri
Azmi
, et al, “
Rain attenuation and worst month statistics verification and modeling for 5G radio link system at 26 GHz in Malaysia
,”
Transactions on Emerging Telecommunications Technologies,
vol.
30
, p.
e3697
,
2019
.
27.
T. S.
Rappaport
,
Wireless communications: principles and practice
vol.
2
: prentice hall PTR New Jersey,
1996
.
28.
Ş.
Sönmez
,
I.
Shayea
,
S. A.
Khan
, and
A.
Alhammadi
, “
Handover management for next-generation wireless networks: A brief overview
,”
2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW),
vol.
1
, pp.
35
40
,
2020
.
29.
A.
Maltsev
,
R.
Maslennikov
,
A.
Sevastyanov
,
A.
Khoryaev
, and
A.
Lomayev
, “
Experimental investigations of 60 GHz WLAN systems in office environment
,”
IEEE journal on selected areas in communications,
vol.
27
, pp.
1488
1499
,
2009
.
30.
I.
Shayea
,
M. H.
Azmi
,
M.
Ergen
,
A. A.
El-Saleh
,
C. T.
Han
,
A.
Arsad
, et al, “
Performance analysis of mobile broadband networks with 5g trends and beyond: Urban areas scope in malaysia
,”
IEEE Access,
vol.
9
, pp.
90767
90794
,
2021
.
31.
M.
Ahuna
and
T.
Afullo
, “
Effects of storm attenuation over satellite links in sub-tropical Africa
,” in
2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)
,
2018
, pp.
115
120
.
32.
M.
Abo-Zeed
,
J. B.
Din
,
I.
Shayea
, and
M.
Ergen
, “
Survey on land mobile satellite system: Challenges and future research trends
,”
IEEE Access,
vol.
7
, pp.
137291
137304
,
2019
.
33.
I.
Shayea
,
T. Abd.
Rahman
,
M. Hadri
Azmi
, and
A.
Arsad
, “
Rain attenuation of millimetre wave above 10 GHz for terrestrial links in tropical regions
,”
Transactions on Emerging Telecommunications Technologies,
vol.
29
, p.
e3450
,
2018
.
34.
D.
Nandi
and
A.
Maitra
, “
Study of rain attenuation effects for 5G Mm-wave cellular communication in tropical location
,”
IET Microwaves, Antennas & Propagation,
vol.
12
, pp.
1504
1507
,
2018
.
35.
O.
Zahid
and
S.
Salous
, “
Long-term rain attenuation measurement for short-range mmWave fixed link using DSD and ITU-R prediction models
,”
Radio Science,
vol.
57
, p.
e2021RS007307
,
2022
.
36.
E.
Ibekwe
,
K.
Igwe
, and
J.
Eichie
, “
Rain attenuation prediction for 5G communication links in Minna, Nigeria
,” in
Journal of Physics: Conference Series
,
2021
, p.
012028
.
37.
J.
Isabona
,
A. L.
Imoize
,
P.
Rawat
,
S. S.
Jamal
,
B.
Pant
,
S.
Ojo
, et al, “
Realistic Prognostic Modeling of Specific Attenuation due to Rain at Microwave Frequency for Tropical Climate Region
,”
Wireless Communications and Mobile Computing,
vol.
2022
,
2022
.
38.
P. H.
Ntanguen
, “
Raindrop size distribution and rainfall attenuation modeling in central Africa
,”
2022
.
39.
G.
Rakshit
and
A.
Maitra
, “
Effective Path Length for Estimating Rain Attenuation over an Earth-Space Path using Features of Stratiform and Convective Precipitation at a Tropical Location
,”
Radio Science,
p.
e2022RS007534
.
40.
T. A.
Muhammad
,
O. O.
David
,
A. G.
Benjamin
,
E. O.
Enoch
,
M. B.
Ladan
,
J. A.
Yabagi
, et al, “
Study of rain-induced signal degradation of terrestrial radio links within Minna and Lapai, North-Central, Nigeria.
41.
L.
Li
,
A.
Sali
, and
S. Q.
Wali
, “
Attenuation of mmWave Based on Measured Data via Rain Sensor in Tropical Region
,” in
2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)
,
2022
, pp.
50
55
.
42.
I.
Shayea
,
T. Abd.
Rahman
,
M. Hadri
Azmi
, and
M. R.
Islam
, “
Real Measurement Study for Rain Rate and Rain Attenuation Conducted Over 26 GHz Microwave 5G Link System in Malaysia
,”
IEEE Access,
vol.
6
, pp.
19044
19064
,
2018
.
43.
M.
Ghanim
,
M.
Alhilali
,
J.
Din
, and
H. Y.
Lam
, “
Rain attenuation statistics over 5G millimetre wave links in Malaysia
,”
Indonesian Journal of Electrical Engineering and Computer Science,
vol.
14
,
2019
.
44.
U.
Korai
,
L.
Luini
,
R.
Nebuloni
, and
I.
Glesk
, “
Statistics of attenuation due to rain affecting hybrid FSO/RF link: Application for 5G networks
,” in
2017 11th European Conference on Antennas and Propagation (EUCAP)
,
2017
, pp.
1789
1792
.
45.
D.
Nandi
and
S.
Nandi
, “
Variation of Rain Rate Effects for Terrestrial Communication at Frequencies above 10 GHz
,” in
2021 Devices for Integrated Circuit (DevIC)
,
2021
, pp.
504
507
.
46.
H.
Xu
,
T. S.
Rappaport
,
R. J.
Boyle
, and
J. H.
Schaffner
, “
Measurements and models for 38-GHz point-to-multipoint radiowave propagation
,”
IEEE journal on selected areas in communications,
vol.
18
, pp.
310
321
,
2000
.
47.
K.
Ulaganathen
,
T. A.
Rahman
,
S. K. A.
Rahim
, and
R. M.
Islam
, “
Review of rain attenuation studies in tropical and equatorial regions in Malaysia: An overview
,”
IEEE Antennas and Propagation Magazine,
vol.
55
, pp.
103
113
,
2013
.
48.
J.
Ryan
,
G. R.
MacCartney
, and
T. S.
Rappaport
, “
Indoor office wideband penetration loss measurements at 73 GHz
,” in
2017 IEEE international conference on communications workshops (ICC workshops)
,
2017
, pp.
228
233
.
49.
W.
Tashan
,
I.
Shayea
,
S.
Aldirmaz-Colak
, and
A. A.
El-Saleh
, “
Voronoi-Based Handover Self-Optimization Technique For Handover Ping-Pong Reduction in 5G Networks
,” in
2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM)
,
2023
, pp.
1
6
.
50.
M.
Ergen
,
F.
Inan
,
O.
Ergen
,
I.
Shayea
,
M. F.
Tuysuz
,
A.
Azizan
, et al, “
Edge on wheels with OMNIBUS networking for 6G technology
,”
IEEE Access,
vol.
8
, pp.
215928
215942
,
2020
.
51.
I.
Shayea
,
T. A.
Rahman
,
M. H.
Azmi
, and
M. R.
Islam
, “
Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia
,”
IEEE Access,
vol.
6
, pp.
19044
19064
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.